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Building the capacity for monitoring and forecasting marine biogeochemistry and ecosystem dynamics is a scientific
challenge of strategic importance in the context of rapid environmental change and growing public awareness of its
potential impacts on marine ecosystems and resources. National Operational Oceanography centres have started to take up
this challenge by integrating biogeochemistry in operational systems. Ongoing activities are illustrated in this paper by
presenting examples of (pre-)operational biogeochemical systems active in Europe and North America for global to
regional applications. First-order principles underlying biogeochemical modelling are briefly introduced along with the
description of biogeochemical components implemented in these systems. Applications are illustrated with examples from
the fields of hindcasting and monitoring ocean primary production, the assessment of the ocean carbon cycle and the
management of living resources. Despite significant progress over the past 5 years in integrating biogeochemistry into
(pre-)operational data-assimilation systems, a sustained research effort is still needed to assess these systems and their
products with respect to their usefulness to the management of marine systems.

Introduction

Global warming, in synergy with ocean acidification, eutro-
phication, deoxygenation, as well as the ongoing exploita-
tion of living marine resources drive major changes in
marine biogeochemistry and ecosystems (Bopp et al.
2005, 2013; Orr et al. 2005; Keeling et al. 2010; Gehlen
et al. 2011; Stock et al. 2011). The awareness of ongoing
and future changes prompted a considerable community
effort over the past decade, resulting in the development
of increasingly complex biogeochemical ocean general cir-
culation models (BOGCM) (Moore et al. 2002; Le Quéré
et al. 2005; Aumont & Bopp, 2006; Follows et al. 2007;
Vichi et al. 2013). Today’s BOGCMs capture the major fea-
tures of large-scale distributions of dissolved inorganic
carbon, alkalinity, nutrients, primary and export production
(Schneider et al. 2008; Lazzari et al. 2010; Séférian et al.
2012). These models gradually developed into lower
trophic level ecosystem (LTE) models by explicitly repre-
senting the first levels of the marine food-web from phyto-
plankton to zooplankton. They are increasingly used in a
variety of studies encompassing the monitoring and
short-term forecasting of ecosystem health up to the

assessment of potential impacts of climate change on
higher trophic levels (Stock et al. 2011). Biogeochemical-
LTE models are becoming essential tools for:

(1) producing decadal reanalyses (Ford et al. 2012;
Fontana et al. 2013) as well as projecting trends
in ocean biogeochemistry and ecosystems in a
changing global environment (Orr et al. 2005;
Schneider et al. 2008; Bopp et al. 2013);

(2) designing the observation system needed to
monitor the current marine biogeochemical status
(Lin et al. 2010; Xue et al. 2012);

(3) quantifying anthropogenic impacts on biogeo-
chemical cycles and marine ecosystems (Bopp
et al. 2005; Orr et al. 2005);

(4) assessing and forecasting changes on time-scales rel-
evant to management purposes (Stumpf et al. 2009;
Raine et al. 2010) (e.g. weekly to seasonal time-
scales for the prediction of harmful algal blooms,
the management of marine resources, episodic
hypoxia/anoxia, oil spill or dispersal of a pollutant).
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While there is an increasing demand for the last item, the
development of a predictive capability for ocean biogeo-
chemistry and LTEs on time-scales ranging from weeks
to seasons remained, until recently, impeded by the lack
of appropriate modelling tools and observational products.

Past decades saw the rapid expansion of global ocean
observing capabilities building on remote sensing and in
situ technologies [e.g. Argo floats, moored arrays such as
Tropical Ocean-Global Atmosphere (TOGA)/Tropical
Atmosphere Ocean (TAO) array, Prediction and Research
Moored Array in the Tropical Atlantic (PIRATA) or
Research Moored Array for African-Asian-Australian
MonsoonAnalysis and Prediction (RAMA)]. The improved
data coverage, both in time and in space, allowed the suc-
cessful implementation of ocean data-assimilation plat-
forms in parallel with the development of operational
oceanography applications. The development, implemen-
tation and demonstration of feasibility were at the centre
of the ‘Global Ocean Data Assimilation Experiment
(GODAE)’. This important 10-year international effort
proved the feasibility and usefulness of integrated obser-
vation-model systems for physical variables. Over the
recent years, biogeochemical variables were progressively
added to global observing systems (e.g. Bio-Argo, ocean
colour sensors and autonomous nutrient analysers). It was
paralleled by the first ‘green’ applications of operational
oceanography aiming at the near-real-time assessment of
the ocean biogeochemical state (Brasseur et al. 2009).

Here, an overview of several (pre-)operational biogeo-
chemical systems presently active in Europe and North
America for global to regional and sub-regional appli-
cations is presented. Systems were selected such as to illus-
trate regional versus global scales of applications,
complexity of biogeochemical models, various approaches
to data assimilation, as well as status of implementation
(e.g. hindcast simulation without biogeochemical data
assimilation to fully coupled operational systems). Empha-
sis is put on developments over the past decade, and a status
report highlighting new opportunities for applications is
presented. A brief overview of physical–biogeochemical
systems for operational applications is first discussed.
The overview distinguishes between biogeochemical
models and the forecasting systems in which these are
embedded. Next, (pre-)operational applications for topics
covering biogeochemistry to ecosystems are illustrated,
and to conclude, major blocking points and prospects for
future evolution are identified.

Physical–biogeochemical systems for operational
applications

Biogeochemical components

Biogeochemical components embedded in large-scale
physical operational systems are simplified representations

of the complex and poorly constrained network of biologi-
cal interactions governing the cycling of matter between
reservoirs of the Earth system. These models do not aim
at a detailed representation of marine ecosystems, but
rather focus on processes and stocks relevant to biogeo-
chemical cycles up to the dynamics of the first trophic
levels. Organisms are often grouped into ‘Plankton Func-
tional Types’ (PFTs) according to their specific function
in carbon and nutrient cycles (Le Quéré et al. 2005;
Hood et al. 2006). Next to function, size is an important
structuring element in these models. Size participates in
modulating nutrient acquisition, as well as grazing pressure
and hence both bottom-up and top-down control acting on
LTEs. The recognition that fluxes within the marine food-
web are characterized by near-constant elemental ratios
(C:N:P = 106:16:1) (Redfield et al. 1963) when averaged
over space and time (e.g. seasonal cycle) allows models
to use a single basic currency (e.g. carbon, nitrogen or
phosphorus). Fluxes of the remaining elements are com-
puted from fixed stoichiometric relationships. While this
approach limits the number of state variables, it does not
allow representation of the decoupling of elemental
cycles observed during blooms and subsequent export
events (Engel et al. 2002). Some models are thus based
on plastic stoichiometry (Baretta et al. 1995; Vichi et al.
2013) which allows for flexible ratios between the major
elements in response to environmental conditions and
physiological requirements. The stoichiometric plasticity
is generally implemented through a modified internal
cell-quota model (Droop, 1973), which relates the specific
growth rate and nutrient uptake to the intracellular nutrient
to carbon ratio (Baretta-Bekker et al. 1997), by adding a
Michaelis–Menten limitation term for the external nutrient
availability. Flexible stoichiometry improves the represen-
tation of co-limited oligotrophic regimes in biogeochemical
models.

The biogeochemical models (Table 1, supplementary
material for a detailed presentation of individual models)
considered here are of the NPZD type, where NPZD
denotes nutrient, phytoplankton, zooplankton and detritus.
While HadOCC, PISCES and BFM have been developed
for open ocean applications, NORWECOM and GSBM are
regional in scope. The European Regional Seas Ecosystem
Model (ERSEM) (www.shelfseasmodelling.org) was orig-
inally developed and routinely applied in the shelf-seas
context but has since been extended for the global ocean
and basin scale applications. It is consequently applicable
for shelf seas and open ocean. The contrast in complexity
between these models (Table 1) reflects at first order the
level of complexity required by the precise context of the
application, e.g. biogeochemical cycling versus ecological
application. The trade-off between complexity and compu-
tational cost is an additional important consideration. With
the exception of HadOCC, all models distinguish between
large and small plankton or, in other terms, between fast-
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growing small cells and slower-growing large cells. The
former are favoured under low-nutrient conditions, while
the latter tend to dominate under high-nutrient conditions,
yielding high biomasses and efficiently driving carbon
export. All models except NORWECOM include a formu-
lation of the carbon cycle. In GSBM, alkalinity is not a
prognostic tracer but is derived from the relationship
between observed alkalinity and modelled salinity. The
number of nutrients is another important between-model
difference, in particular the inclusion or omission of iron
(Fe). Fe limits primary production across large oceanic
regions, i.e. the high-nutrient low-chlorophyll (HNLC)
regions, such as the Southern Ocean, the Equatorial
Pacific. The availability of Fe (along with phosphate) also
modulates atmospheric N2 fixation. Both NORWECOM
and GSBM do not include Fe cycling, since Fe is not a lim-
iting micro-nutrient in their target regions. BFM, as well as
PISCES, consider Fe biogeochemistry along with corre-
sponding sources of external input.

Despite all models being of the NPZD type and hence
sharing similarities in their underlying conceptual frame-
work, there is a progression in complexity from HadOCC
to NORWECOM, respectively GSBM, and PISCES to
BFM. With the widespread use of biogeochemical
models and the rapid increase in state variables, the identi-
fication of optimal complexity has become an active area of
research (Friedrichs et al. 2007; Ward et al. 2013; Kwiat-
kowski et al. 2014; Xiao & Friedrichs, 2014a, 2014b). In
the context of this paper, we are more specifically con-
cerned with howmodel complexity plays out in model fore-
cast skill. The models presented here are coupled to
different physical models, and any coordinated model inter-
comparison exercise would highlight differences in skill
resulting from differences in both the biogeochemical and
physical components. It would fall short in identifying
the link between the structure of the biogeochemical
model and forecast skill of the system. Addressing the
question of optimal complexity of biogeochemical
models calls for an approach in which the complexity of
the biogeochemical component is increased in a stepwise
fashion within an unchanged physical environment (Kwiat-
kowski et al. 2014).

Published studies suggest that models with two phyto-
plankton and two zooplankton size classes would have the
optimal complexity for representing biogeochemical
dynamics across a variety of regimes together with a
good predictive ability (Friedrichs et al. 2007; Ward et al.
2013; Xiao & Friedrichs, 2014a, 2014b). Increasing the
number of state variables might increase model skill – in
particular when compared with local 1D or regional data
sets – but goes along with a decrease in portability and,
possibly, reduced predictive skill. Finally, model complex-
ity is a function not only of the number of PFTs, but also of
the degree of sophistication of process formulation. Future
studies are required to address the benefits of theT
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inclusion of multiple nutrients and chemical speciation, of
flexible stoichiometry and hence internal cell quota, etc. to
model forecasting.

For operational applications, trade-offs between model
complexity, computational costs and forecast skill have to
be carefully evaluated, keeping in mind that models
should be as simple as possible, but as complex as
needed. Ultimately, the required level of complexity will
depend on the scientific questions the models have been/
are being designed to answer. Operational systems are
deployed over a variety of spatial scales from regional to
basin-wide to global applications. Models designed to
address coastal processes often require a higher model
complexity because key processes that govern plankton
dynamics in the shallow waters (such as tidal processes,
resuspension, sediment dynamics, benthic dynamics, etc.)
are not of critical importance in the open ocean. Complex-
ity in the number of plankton variables in coastal waters is
also justified in order to capture, for example, occurrences
of harmful algal blooms that affect fisheries, aquaculture,
human health and local economies, whereas this is not an
issue in the open ocean. There is thus no unique answer
to the question of optimal model structure, and the preced-
ing rather pleads in favour of a diversity of biogeochemical
models.

Forecasting systems

The major characteristics of the forecasting systems in
which the biogeochemical components are embedded are
summarized in Table 2.

FOAM-HadOCC

HadOCC has been coupled online to the global configur-
ation of the Met Office’s operational Forecasting Ocean
Assimilation Model (FOAM) (Storkey et al. 2010; Block-
ley et al. 2014), which is based on the Nucleus for Euro-
pean Modelling of the Ocean (NEMO) hydrodynamic
model (Madec, 2012) and the Los Alamos sea ice model
(CICE) (Hunke & Lipscomb, 2010). A key feature of
FOAM is the ability to assimilate remotely sensed and in
situ observations of temperature, salinity, sea-level
anomaly (SLA) and sea ice concentration. The data assim-
ilation has recently been upgraded from the analysis correc-
tion scheme of Martin et al. (2007) to the 3D-Var
NEMOVAR scheme (Waters et al. 2014).

The data-assimilation capability has been extended to
also assimilate chlorophyll data derived from remotely
sensed ocean colour and in situ observations of sea
surface partial pressure of carbon dioxide (pCO2). This
has been used for both reanalysis and near-real-time fore-
casting applications, with the aim of improving estimates
of air–sea CO2 flux and other carbon-cycle variables, as
well as biological variables. Both the chlorophyll (Ford

et al. 2012) and pCO2 (While et al. 2012) assimilation
schemes follow a two-stage process. The first stage is to
generate a set of sea-surface chlorophyll or pCO2 incre-
ments. This is currently done using the analysis correction
scheme of Martin et al. (2007) but will be updated to use the
same NEMOVAR scheme as the operational physics
system. Both employ an observation operator that uses a
first-guess-at-appropriate-time (FGAT) technique. The
second stage is to generate a set of multivariate increments,
which are then applied to the model. Surface chlorophyll
increments are converted to a set of increments for all bio-
geochemical model state variables, at all depths, using the
nitrogen-balancing scheme of Hemmings et al. (2008). This
uses a principle of conservation of nitrogen and carbon to
propagate the information from the chlorophyll obser-
vations as fully and realistically as possible to the rest of
the model. The scheme is designed to be computationally
efficient, making it suitable for operational applications.
In the pCO2 assimilation scheme, the surface pCO2 incre-
ments are converted to dissolved inorganic carbon and
alkalinity increments using the method described in
While et al. (2012), and applied throughout the mixed layer.

The coupled FOAM-HadOCC system is currently pre-
operational, and different configurations are used for differ-
ent experiments. The open ocean physical FOAM system is
fully operational, and details of its running are given in
Blockley et al. (2014). There is also an operational
FOAM configuration covering the northwest European
shelf seas (Edwards et al. 2012; O’Dea et al. 2012). This
is coupled online to ERSEM, and both physical and bio-
geochemical analysis and forecast products are provided
operationally via the MyOcean project (http://www.
myocean.eu/).

TOPAZ-NORWECOM

TOPAZ-NORWECOM is used in the Arctic Forecasting
Center in the MyOcean project. The modelling system is
the result of a collaboration between the IMR and
NERSC for the developments and MET Norway, which
exploits the system operationally. The coupled model is
HYCOM-NORWECOM (Pätsch et al. 2009; Samuelsen
et al. 2009). It uses the HYbrid Coordinate Ocean Model
[HYCOM (Bleck, 2002)] as the physical model and NOR-
WECOM (Oki & Sud, 1998; Skogen & Søiland, 1998) as
the ecosystem model. The physical and biological models
are coupled online. HYCOM uses a combination of isopyc-
nal and z-coordinates, which allows for both good conser-
vational properties in the deep ocean and high vertical
resolution in the upper mixed layer. The present model con-
figuration has 28 vertical layers, of which the five upper
layers are in z-coordinates, and the lower 23 layers are
hybrid layers.

The river forcing is generated using a hydrological
model – total runoff integrating pathways (TRIP) (Oki &
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Table 2. Synthetic overview of main characteristics of forecasting systems discussed in this paper.

System Ocean model
Biogeochemical

model Configuration

Data-assimilation scheme Assimilated data

System statusPHYS BGC PHYS BGC

FOAM-HadOCC NEMO3.2-
CICE

HadOCC Global, 1/4°cos(lat)
resolution, 75 vertical
layers

3D-Var Analysis
correction +
multivariate
balancing

Satellite SLA,
SST, sea ice,
in situ SST,
T/S profiles

Chlorophyll-a
or pCO2

Pre-operational
(BGC),

operational
(PHYS)

FOAM-ERSEM NEMO3.2 ERSEM Atlantic Margin, 7 km
resolution, 32 vertical
layers

Analysis
correction

No SST No Operational

TOPAZ-NORWECOM HYCOM NORWECOM North Atlantic and Arctic
(Bering Strait), 50 km
resolution 28 vertical
layers

DEnKF DEnKF and
Gaussian ana-
morphosis

Satellite SLA,
SST, sea ice

Chlorophyll-a Pre-operational

TOPAZ-NORWECOM HYCOM NORWECOM Same but 12 km resolution DEnKF No Satellite SLA,
SST, sea ice,
in situ T/S
profiles

No Operational

MERCATOR-OCEAN/
BIOMER

NEMO 3.1 PISCES
(NEMO3.2) offline

coupleda

Global, 1/4°cos(lat)
resolution, 50 vertical
layers

SAM2V1 No Satellite SST,
SSH, in situ
T/S profiles

No Operational

MFS NEMO3.4
+waves+atm.

pressure

BFM (OPATM)
offline coupleda

Mediterranean Sea (1/16°),
72 vertical layers

3D-Var 3D-Var Satellite SSH,
in situ T/S
profiles

Chlorophyll-a Operational

CANOPA-GSBM OPA9-LIM2 GSBM East Canadian shelf (1/12°),
46 vertical layers

No No No No Non-assimilative
hindcast

BGC: biogeochemistry; PHYS: physics.
aBiogeochemical model coupled offline (run sequential) to physical model.
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Sud, 1998). The river outflow calculated by TRIP was
combined with data from Global Nutrient Export from
Watersheds [GlobalNEWS (Beusen et al., 2009; Seitzinger
et al. 2005)] and used as nutrient river input to the model.
Nutrients and oxygen are relaxed to climatology at the
lateral boundaries. For initialization of NORWECOM, cli-
matological values of nutrients and oxygen were used; all
other variables were set to a constant low value.

The capacity to assimilate ocean colour data has been
developed using a version of the Ensemble Kalman Filter
that includes both a Gaussian anamorphosis in order to
handle the non-Gaussian model variables (Simon &
Bertino, 2009) and a state augmentation in order to estimate
biological model parameters together with the model
variables (Simon & Bertino, 2012). These assimilation
procedures have been applied with the HYCOM-NORWE-
COM system coupled online at a coarser resolution than
that of the real-time forecast system – 50 km instead of
12 km – for the period 2007–2010. An ensemble of 100
members has been integrated. The data are available as
part of the MyOcean service as the first Arctic biological
reanalysis that assimilates jointly physical (altimeter, SST,
sea ice) and biological observations.

MERCATOR-OCEAN/BIOMER

Since 2012, the French centre for operational oceanogra-
phy Mercator Océan has added near-real-time assessment
of ocean biogeochemistry called BIOMER to its suite of
products. BIOMER is based on the ecosystem model
PISCES forced offline with ocean physical fields provided
by the global operational system PSY3V3 (Lellouche et al.
2013) at a horizontal resolution of 1/4° cos(lat) (NEMO
3.1, 50 vertical levels, atmospheric forcings from
ECMWF operational analysis at 3 h, CORE bulk formu-
lation), with assimilation of temperature, salinity and sea-
level data via the SAM2 assimilation scheme based on
the SEEKmethod (Brasseur & Verron, 2006), an Incremen-
tal Analysis Update (Bloom et al. 1996; Ourmières et al.
2006) and a large-scale bias correction for temperature
and salinity based on a 3D-var approach. To decrease the
computational burden, the spatial resolution of physical
fields was coarsened to 1°, and temporal output was aver-
aged over one week (El Moussaoui et al. 2011) for
BIOMER1. Assessment of biogeochemical tracer (El
Moussaoui et al. 2011) fields revealed a degradation of
modelled chlorophyll [Figure 1(b)] and nutrient distri-
butions (not shown) in the equatorial band compared with
a simulation without assimilation of physical data. The
overestimation of chlorophyll and nutrients was attributed
to spurious vertical fluxes in response to unbalanced phys-
ical data assimilation (Barciela et al. 2012) associated with
biases in assimilated MSSH (mean sea surface height).

The recent version of the system, BIOMER4, uses the
same spatial resolution for the physical and biogeochemical

systems [1/4°cos(lat)]. Besides its higher spatial resolution,
BIOMER4 [Figure 1(a)] relies on a daily forcing of the
offline biogeochemical model with ocean physical and
atmospheric fields, and assimilation of MSSH is changed
to hybrid MSSH. Modifications of the biogeochemical
component include the transport of passive tracers (coeffi-
cient of diffusion) and the tuning of biogeochemical par-
ameters (specifically the photosynthetic response to
changes in light intensity and the sinking speed of large par-
ticles). Figure 1 compares surface mean chlorophyll (Chl)
distributions for 2013 for (a) BIOMER4, (b) BIOMER1
and (c) GlobColour data. The bias towards chlorophyll
levels that are too high, especially in the western equatorial
Pacific identified in BIOMER1 (El Moussaoui et al. 2011),
is alleviated in the new version. Similarly, productive
regions associated with the continental shelf (e.g. Indone-
sian Archipelago, China Sea and North Sea) and eastern
boundary upwelling systems (e.g. Chile-Peru) are better
represented in BIOMER4. Standard deviations computed
from monthly surface nutrient, oxygen concentrations and
chlorophyll fields (year 2013) for model output and data,
as well as correlation coefficients, are presented on a
Taylor diagram [Figure 1(d)]. Both scores are improved
in the new model version. BIOMER4 proved skilful in
reproducing the seasonal cycle and interannual variability
of biogeochemical properties, as illustrated in Figure 2,
for North Atlantic chlorophyll concentrations. For a
complete evaluation, please refer to MyOcean quality
information document MYO2-GLO-QUID-001014
(http://www.myocean.eu/web/69-myocean-interactive-
catalogue.php). Improvements between BIOMER1 and
BIOMER4 result from the combination of changes made
to the physical–biogeochemical system: (1) increasing the
spatial resolution from 1° to 1/4° improved the represen-
tation of productive shelf regions and Eastern Boundary
Upwelling Systems; (2) shifting from assimilation of
MSSH to hybrid-MSSH reduced spurious vertical vel-
ocities; and (3) adjusting selected parameters of PISCES
reduced its productivity.

Model output will be made available in near-real-time
with a lag of one day for nitrate, phosphate, dissolved
oxygen, iron, dissolved silica, phytoplankton biomass, net
primary production (NPP) and chlorophyll on the
MyOcean portal in September 2014. The near-real-time
assessment of ocean biogeochemistry is completed by an
interannual hindcast simulation from 2007 to the present.

MFS-OPATM-BFM

The OPATM-BFM model system (Lazzari et al. 2010) has
been developed at National Institute for Oceanography and
Experimental Geophysics (OGS) and is the biogeochemical
component of the MyOcean Mediterranean Monitoring and
Forecasting System (MedMFC). Since the start of the pre-
operational implementation in 2007 within the MERSEA
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project, substantial improvements have been made. In the
framework of MyOcean, the system was upgraded by
adding a 3D variational assimilation scheme (Teruzzi
et al. 2014a) for satellite (MODIS)-derived chlorophyll
and apparent optical properties (AOP). While satellite-
derived chlorophyll constrains the C:chlorophyll ratio of
phytoplankton, AOP allow the estimation of the optical
model. The transport model is based on OPA 8.1 (Foujols
et al. 2000) including additional enhancements such as a
flux-corrected advection scheme. The horizontal spatial
resolution is 1/16°. The physical forcing for biogeochem-
ical processes is pre-computed at the same resolution by
the ocean general circulation model MFS based on
NEMO3.4. MFS supplies the daily averaged fields of hori-
zontal and vertical current velocities, vertical eddy diffusiv-
ity, potential temperature and salinity, in addition to surface
data for solar shortwave irradiance and wind stress.

The Med-MFC operational chain runs unattended twice
a week in an offline mode. It is composed of four steps: (1)
downloading of forcing and daily MODIS chlorophyll data
and pre-processing, (2) 3D-var satellite chlorophyll assim-
ilation, (3) 7 day forecast of the biogeochemical state of the

sea and (4) MyOcean catalogue update. The biogeochem-
ical run is composed of (1) 7 days of hindcast (the first
day: analysis with data assimilation on Wednesday run
only) and (2) 10 days of forecast for the Wednesday run.
Operational output includes daily 3D fields of chlorophyll,
oxygen, nitrate, phosphate, aggregated phytoplankton
biomass and NPP.

CANOPA-GSBM

CANOPA-GSBM is being developed in collaboration with
three Fisheries and Ocean Canada Institutes. The ocean cir-
culation model, CANOPA, is described in Brickman &
Drozdowski (2012). The modelling system is based on
the ocean code OPA version 9.0 (Madec, 2012) coupled
to the sea-ice model LIM2 (Madec et al. 1998). The phys-
ical and biochemical (GSBM) models are coupled online.
The grid of the model covers the Gulf of St. Lawrence,
the Scotian Shelf and the Gulf of Maine with a spatial res-
olution of 1/12° and 46 layers of variable thickness in the
vertical. The model includes tidal and river forcing. It is a
prognostic model, meaning that the temperature and

Figure 1. Mean surface chlorophyll-a concentrations (mgChla/m3) in 2013: (a) BIOMER4 (recent model version); (b) BIOMER1 (pre-
vious model version); (c) GlobColour observational product; (d) Taylor diagram of modelled surface concentrations of nutrients (dissolved
silica, phosphate, nitrate), oxygen, chlorophyll-a and log10(chlorophyll-a). Standard deviations are normalised with respect to data
(WOA2009 and GlobColour).
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salinity fields are free to evolve with time and are only con-
strained through open boundary conditions, freshwater
runoff and surface forcing. Runoff from the large
St. Lawrence river is estimated from water-level measure-
ments, while runoff from the other rivers is obtained from
a simple hydrological model (Lambert et al. 2013).
Monthly climatologies for temperature, salinity, nitrate,
oxygen and dissolved inorganic carbon are used to initia-
lize the model and to provide lateral boundary conditions.
Monthly climatologies of nitrate are also used for river
input. Surface forcing for CANOPA is obtained from the
Canadian Meteorological Centre Global Environmental
Multiscale (CMC-GEM) atmospheric model (Pellerin
et al. 2003).

CANOPA-GSBM is used to produce an annual state of
the ecosystem for part of the Gulf of St. Lawrence. Within
the Canadian National Approach under GODAE Ocean-
View, CONCEPTS, EC and DFO plan over the next 4
years to couple GSBM to a subset of their Global Ice
Ocean Prediction Systems (GIOPS) currently operational
at Environment Canada as well as to a planned Regional
Ocean Ice Prediction System (RIOPS) to be implemented
in 2015 (Ryan et al. 2015; Tonani et al. 2015).

Synthesis of present status of coupled physical–
biogeochemical systems

The review of (pre-)operational physical–biogeochemical
systems presented here highlights the diversity of biogeo-
chemical models and data-assimilation methods used
across the community (Tables 1 and 2). CANOPA-

GSBM, in its present set-up, produces a yearly bio-
geochemical hindcast assessment at a regional scale. Two
systems (MERCATOR-OCEAN/BIOMER and OPATM/
BFM) take advantage of physical data-assimilation
products to drive ocean biogeochemistry offline. This
approach might be seen as an intermediate step towards
online coupled physical–biogeochemical systems as exem-
plified by the FOAM-HadOCC and TOPAZ-NORWECOM
model suites. Since the review by Brasseur et al. (2009),
several GODAE systems are in the process of moving, or
have moved, to operational mode (Table 2). Satellite
ocean colour data are still the only biogeochemical data
set meeting the requirements of spatial and temporal cover-
age for assimilation into operational systems. However,
other sources of observations can be useful depending on
the aims of the experiment – for instance, a pCO2 assimila-
tion scheme is described in the following section of this
paper.

A number of different techniques have been used to
assimilate surface ocean chlorophyll, and these consistently
improve modelled distributions compared with both the
assimilated satellite data and independent in situ obser-
vations. However, very much as for the issue of model
complexity discussed above, no unique recommendation
emerges at this stage. The diversity of approaches guaran-
tees the necessary degree of scientific diversity for the
development of targeted applications and variable spatial
scales. The increasing number of systems producing bio-
geochemical forecasts and reanalyses will enable coordi-
nated evaluation and model intercomparison exercises in
the near future.

Figure 2. Hovmöller diagram of log10 (chlorophyll-a) between 2007 and 2013 in the North Atlantic at 20W and 20S, 70N: (left panel)
BIOMER4; (right panel) GlobColour.
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Physical–biogeochemical model applications in
operational oceanography

Marine primary production

NPP is at the base of the marine food web. The reliable simu-
lation of its spatial distribution and temporal variability is of
importance for understanding and predicting ecosystem
dynamics, as well as for the development of downstream
applications such as the operational management of marine
resources. The evaluation of modelled NPP is not straight-
forward. Estimates derived from remote sensing rely them-
selves on empirical models that derive NPP as a function
of chlorophyll, temperature and light. In situ measurements
are scarce and fail to resolve spatial and temporal variability.
This explains why biogeochemical models are evaluated
against chlorophyll and nutrient distributions. Three-dimen-
sional nutrient distributions reflect the combination of phys-
ical transport and biological activity in surface waters and
across the water column (Séférian et al. 2012). In addition,
data from Eulerian time-series stations and cruises provide
complementary information on plankton biomasses and bio-
logical rate estimates, including NPP. In order to illustrate the
skill of (pre-)operational physical–biogeochemical model
systems, we present hereafter two biogeochemical reana-
lyses: one at the global scale and one for the Mediterranean
Basin.

FOAM-HadOCC has recently been used to produce a
1° global daily biogeochemical reanalysis covering the
period September 1997 to July 2012, assimilating daily
merged chlorophyll products from GlobColour (http://
www.globcolour.info). For this particular work, only chlor-
ophyll data were assimilated, not physics or pCO2. The data
assimilation has been shown to improve the fit of modelled
chlorophyll not only to the assimilated satellite data but
also to independent in situ chlorophyll observations, both
at and beneath the surface. The changes to model chloro-
phyll result in corresponding changes to the primary pro-
duction fields. Comparisons with in situ observations of
nitrate show no degradation of the model nutrient fields
as a result of the assimilation. These results are similar to
those detailed in Ford et al. (2012), to which the reader is
referred for a more detailed validation of the chlorophyll-
assimilation scheme. The reanalysis is being used to inves-
tigate seasonal and interannual variability in the model
results, such as relationships between biogeochemical vari-
ables and known climate drivers such as the El Niño
Southern Oscillation and North Atlantic Oscillation, and
how the data assimilation impacts this. Work is also
under way to assess reanalysis results using initial products
from the European Space Agency’s Climate Change Initiat-
ive project (http://www.esa-oceancolour-cci.org).

A 12-year (1999–2010) reanalysis of Mediterranean
Sea biogeochemical tracer fields at 1/8° has been made
available as part of the recent MyOcean release V3.1. It

provides monthly 3D mean fields of chlorophyll,
phosphate, nitrate, dissolved oxygen, NPP and phytoplank-
ton biomass. A database of satellite derived (SeaWIFS)
surface chlorophyll concentrations delivered by the
MyOcean Ocean Colour Thematic Assembly Center was
used for data assimilation. Data assimilation of surface
chlorophyll concentration is performed weekly through a
3D variational scheme (3D-var) following Dobricic and
Pinardi (2008) and modified as in Teruzzi et al. (2014a).
To statistically project surface information to a fully 3D
chlorophyll field, EOF analysis has been applied to a
multi-annual (1998–2004) OPATM-BFM run (Lazzari
et al. 2012) identifying 12 months and nine sub-regions.
The efficiency of the procedure was assessed by visual
inspection (see Figure 3), as well as by comparing predicted
surface chlorophyll fields to satellite-derived observations
and in situ data (Teruzzi et al. 2014a).

For the purpose of model validation and assessment of
the impact of monovariate chlorophyll assimilation on the
overall model prediction skill, an extensive dataset was col-
lated for dissolved oxygen, nitrate, phosphate, dissolved
silica and NPP (Lazzari et al. 2012). It combines biogeo-
chemical measurements available at the OGS National
Oceanographic Data Centre with additional recent
cruises. The metrics introduced are based on nearest-
point statistics. Model bias and correlation were calculated
according to Allen et al. (2007) and summarized in Table 3
for chlorophyll, dissolved oxygen and nutrient data for the
reanalysis and the corresponding free simulation (hindcast).
The mostly lower bias at depth reflects the realistic initial
conditions. Relative model output/data mismatch is ampli-
fied when expressed as relative error for low to very low
nutrient levels. This explains in part the larger bias obtained
for nitrate and phosphate for oligotropic surface waters
compared with the ocean interior. Dissolved silica distri-
butions are poorly represented. Basin-wide correlations
between observed and modelled tracer distributions are
good at depth (again reflecting initial conditions) and for
surface phosphate and dissolved oxygen fields. It follows
from the comparison between the two simulations that
there is a substantial improvement in surface chlorophyll.
The bias on nutrient estimates is not adversely affected
by data assimilation with improvements for four out of
nine fields, while reanalysis correlation outperforms hind-
cast in seven out of nine cases. For this reanalysis, chloro-
phyll was assimilated and projected on phytoplankton
biomass only, that is, without correcting nutrient concen-
trations. While this approach improved surface chlorophyll
distribution, 3D nutrient fields and oxygen distribution only
partially benefit from univariate assimilation of surface
chlorophyll. This example argues in favour of the develop-
ment of multivariate approaches to the assimilation of bio-
geochemical data in coupled physical–biogeochemical
models.
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Figure 3. Comparison of surface chlorophyll as (1) observed by SeaWiFS (first column), (2) predicted by a hindcast (control run) (3) as in
(2) but with surface chlorophyll-a data assimilation (Assimilation Run). Three model daily means (3, 8 and 13 March 2008) exhibit better
predicting capabilities of the DA run than with the control run. The SeawiFS chlorophyll-a field is assimilated to produce the prediction of
the next time (blue arrows), (modified after Brasseur & Verron, 2006).

Table 3. Uncertainty of Mediterranean biogeochemical reanalysis. Basin-wide bias (percentage) and correlation have been produced for
the upper ocean (0–200 m, italics) and for the ocean interior (>200 m). The statistics are computed against in-situ profiles for dissolved
oxygen, nitrate, phosphate, dissolved silica while surface Chl-a is compared with satellite observations. The best performances are indicated
in bold [modified after Teruzzi et al (2014a)].

Variable Number of match-ups

Model Bias (%) Correlation

Hindcast Reanalysis Hindcast Reanalysis

Chlorophyll 162368 –0.85 –337 0.60 0.88
Dissolved Oxygen (0-200m) 534 6.09 5.46 0.65 0.67
Dissolved Oxygen (200m-bottom) 1635 0.68 0.22 0.29 0.33
Nitrate concentration (0-200m) 2546 –4.27 27.37 0.21 0.26
Nitrate concentration (200m-bottom) 3593 –5.77 5.17 0.43 0.46
Phosphate concentration (0-200m) 4676 39.78 41.19 0.64 0.65
Phosphate concentration (200m-bottom) 6685 6.00 6.70 0.50 0.50
Dissolved Silica concentration (0-200m) 3536 –115.35 –105.83 0.21 0.21
Dissolved Silica concentration (200m-bottom) 6479 –38.36 –36.93 0.69 0.70
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Ocean carbon cycle

Accurate simulation of the marine carbon cycle, particularly
air–sea CO2 fluxes, is desirable for ocean carbon cycle moni-
toring and reanalysis purposes. As such, the aim of produ-
cing a reanalysis with FOAM-HadOCC based on the
assimilation of ocean colour data is not just to simulate bio-
logical variables such as chlorophyll and primary pro-
duction, but to assess the impact that assimilating satellite
chlorophyll data have on carbon-cycle variables. When com-
parison is made with in situ observations of sea surface pCO2

in the open ocean, the overall impact of the chlorophyll data
assimilation on the model carbon cycle is small, with similar
error statistics seen for both a free run and an assimilation
run. This is due in part to pCO2 being largely physically con-
trolled. However, in regions where there is a strong biologi-
cal component to the carbon cycle, for instance during the
North Atlantic spring bloom, the chlorophyll assimilation
can have a beneficial impact. An example is shown in
Figure 4, which compares the June mean North Atlantic
air–sea CO2 flux from equivalent free and chlorophyll assim-
ilation runs of FOAM-HadOCC with the climatology of
Takahashi et al. (2009) for June. In the free run, the air–
sea CO2 flux is too weak across the northern part of the
basin, with an area of spurious outgassing seen in the
central North Atlantic. This error is much reduced in the
chlorophyll assimilation run, which also shows increased
CO2 uptake in the northeast Atlantic, better matching the cli-
matology. This demonstrates the potential of ocean colour
assimilation to improve estimates of non-assimilated
variables.

Next, a scheme to assimilate in situ pCO2 obser-
vations has been developed by While et al. (2012) and
implemented in FOAM-HadOCC. The assimilation was
shown to reduce model pCO2 errors, which has a
direct impact on air–sea CO2 fluxes. Impacts were also
seen in the dissolved inorganic carbon and alkalinity
fields. Where systematic pCO2 errors were not reduced,
it was concluded that this was due to sparse observa-
tional coverage in those regions. However, the assimila-
tion had a long memory, with information from the

increments retained by the model for several months.
This demonstrates that even a limited number of obser-
vations can have a substantial and lasting impact on
the model results. In future, this method can be applied
to larger pCO2 observation databases such as the
Surface Ocean Carbon Atlas (SOCAT) (Bakker et al.
2014) in order to produce long-term reanalyses. A devel-
opment could be to assimilate physical, chlorophyll and
pCO2 data simultaneously, with cross-covariances or
balance relationships between the physical and biogeo-
chemical variables, thereby making maximum use of
available observations.

In order to achieve successful pCO2 forecasts, the esti-
mation of poorly known static and globally constant bio-
logical model parameters is a necessary way ahead.
However, affordable parameter estimation methods still
need to be proven for non-linear models with positive-
valued variables. An attempt was therefore made at
NERSC to estimate two parameters of the MICOM-
HAMOCC model (Assmann et al. 2010) using a local
Ensemble Kalman Filter with state augmentation and Gaus-
sian anamorphosis, similarly to the aforementioned
HYCOM-NORWECOM system. The two model parameter
values (namely phytoplankton growth rate and air–sea gas
transfer) were also estimated locally. The surface pCO2

observations from SOCAT were assimilated for 4 years
1999–2003 and did improve marginally, but systematically,
the forecasts of pCO2 (Simon & Bertino, 2013) (Figure 5).
The proof of concept was only a partial success: a perfect
twin experiment showed that the air–sea gas transfer coef-
ficient could be retrieved everywhere, but the estimates of
phytoplankton growth rate diverged in extra-tropical
areas such as the North Pacific, where the nonlinearities
seemed more severe than elsewhere, and denser obser-
vations would be necessary. For real-time forecasting of
pCO2, the ultimate system should combine assimilation
of physical data, chlorophyll data and surface pCO2 as
well as online estimation of a few model parameters, for
which the scientific basis is being progressively
established.

Figure 4. Air–sea CO2 flux (mol m-2 yr-1) in the North Atlantic from (a) a free run of FOAM-HadOCC (June mean, 1998–2012), (b) a
chlorophyll-a assimilation run of FOAM-HadOCC (June mean, 1998–2012) and (c) the climatology of Takahashi et al. (2009) for June.
Positive values denote a flux into the ocean.
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Operational management of fisheries

As illustrated throughout this paper, coupled physical–bio-
geochemical model systems are becoming increasingly
skilful and starting to provide useful information to real-
world applications, such as the operational management
of fisheries. Preliminary steps towards this goal have
been initiated, for example, in the case of the high-seas
pelagic tuna fisheries. Operational physical model data
are used to drive the spatial ecosystem and populations
dynamics model SEAPODYM, to simulate functional
groups of organisms at the intermediate trophic levels
(Lehodey et al. 2010) and the dynamics of their predators,
i.e. tuna (Lehodey et al. 2008). The model also includes a
quantitative estimation approach (Senina et al. 2008) allow-
ing the use of this model for fish stock assessment and
testing management scenarios (Sibert et al. 2012).

The INDESO (Infrastructure Development of Space
Oceanography) project, which includes the development
of an operational ecosystem and tuna model (SEAPO-
DYM) in a regional Indonesian configuration, provides a
proof of concept. A global operational configuration
driven by Mercator-Ocean PSY3V3 model outputs (temp-
erature and currents), and global primary production
derived from satellite ocean colour data (Behrenfeld &
Falkowski, 1997) provide the boundary conditions for the
regional configuration. The first version of the model
chain uses dynamical output from a regional configuration
of the ocean general circulation model NEMO/OPA at 1/
12° resolution and satellite derived NPP. In the near
future, the regional coupled physical–biogeochemical
model based on NEMO/PISCES will provide physical
and biogeochemical forcings for SEAPODYM
(e.g. temperature, salinity, euphotic depth, oxygen and

NPP). Environmental constraints on tuna population
dynamics are complemented by best estimates of fishing
mortality. The chain of production runs every week and
delivers one week of hindcast, one week of nowcast and
10 days of forecast. These outputs will be used by the
Fishing Authority to implement a better collection and ver-
ification of fishing data. The real-time and high-resolution
configuration should help to quickly improve the model
calibration and consequently abundance estimates needed
to establish the optimal level of exploitation (total
allowed catch) and the conservation measures (e.g. identi-
fication and protection of spawning grounds and nurseries)
required for the sustainable exploitation of this essential
resource.

Another example is given by Christensen et al. (2013),
who, within the first MyOcean project, developed a short-
term (seasonal up to a couple of years) forecasting
system for sand-eel population based on larval dispersal
and population analysis covering several life cycles, in
order to support fisheries management providing infor-
mation on the maximum sustainable yield and the effects
of alternative fishing scenarios.

Future challenges, perspectives and blocking points

Biogeochemical data assimilation

Today, ocean colour observations and derived products
(e.g. surface estimates of chlorophyll concentration, NPP,
particulate organic carbon) are the only source of data col-
lected routinely at a global scale that provide a quantitative
description of the surface signature of marine primary pro-
duction at relevant space and time-scales. However, when
the models reviewed in the previous section are used as
deterministic tools to hindcast/forecast the biogeochemical
properties of the ocean without data to constrain the simu-
lations, they quite often display systematic biases as com-
pared with ocean colour patterns observed from satellites.
Misfits between ocean colour observational products and
simulated field properties may have many different
origins, e.g. inaccurate forcing fields (heat/momentum
surface fluxes, photosynthetically active radiation fluxes,
precipitations) used to drive the simulations, unrealistic
physical model response in terms of advection/diffusion
by ocean currents or unresolved spatial scales, oversimpli-
fied complexity of biogeochemical model structure and
process formulation (e.g. no day–night cycle for photosyn-
thesis) and uncertain parameterizations of interactions
between biological species. Satellite-derived chlorophyll
fields in turn suffer from a low signal-to-noise ratio, sensi-
tivity to cloud cover and aerosols, as well as water transpar-
ency. They depend on (regional) empirical algorithms that
transform the water-leaving radiance into average chloro-
phyll concentration of surface waters. As both models
and observation products are uncertain, the assimilation

Figure 5. Time series of pCO2 RMS errors for a free run of
MICOM-HAMOCC and the corresponding EnKF forecast,
before assimilation of the SOCAT data. The shaded area shows
the improvement gained by data assimilation. STD forecast
refers to the EnKF uncertainty estimates.
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of data into coupled physical-biological models provides a
useful means to reduce uncertainty in modelled properties
and help identify the source of errors in modelling and
data processing chains. Data assimilation into coupled
models can be used to (1) refine the forcing functions of
physical models (Skandrani et al. 2009) that drive
biology, (2) improve the representation of mesoscale fea-
tures into eddy-permitting or eddy-resolving models (e.g.
Martin et al. 2015), (3) reduce the range of uncertainty of
model parameters in biological interaction terms (Doron
et al. 2013) or (4) produce statistical estimations of the bio-
logical fields (Fontana et al. 2013). Data assimilation,
however, cannot be a substitute for model improvement,
since data assimilation itself becomes more effective with
model skill.

In essence, data assimilation into coupled models
should be treated as a fully multivariate estimation
problem, i.e. one piece of data related to physical or bio-
logical properties should impact the whole coupled state
vector. However, as most coupled models do not include
significant dynamical feedback from biology to physics
(i.e. biology can be considered as mostly ‘driven’ by
physics to a large extent), the assimilation can be treated
as a decoupled problem. In this case, however, spatial mis-
matches between assimilated physical and biogeochemical
fields could arise (i.e. front position), owing to the different
data sets used in the assimilation processes. In addition,
owing to the limited amount of information available to
data assimilation, controlling many different error sources
(in the physical or biological modelling components) at
once is often impossible (Solidoro et al. 2003). The vast
majority of operational systems provide physical fields
with reduced uncertainty regarding horizontal advective
fields, which is already very useful to reduce errors from
the physics into coupled systems. However, the consistency
of assimilated vertical advective or diffusive fluxes (associ-
ated with sub-grid scale parameterizations) may be
unchanged or even degraded by data assimilation
(Berline et al. 2006). This is recognised as a major
problem with present assimilative systems that still requires
dedicated research effort from the community.

In parallel, the assimilation of ocean colour data has
received a growing attention by the research community
during the past years. A variety of approaches have been
tested [see the review by Gregg et al. (2009)] with some
of them expanded today to (pre-)operational status (Ford
et al. 2012; Fontana et al. 2013; Teruzzi et al. 2014a,
2014b). A key issue for future operational applications
will be to build appropriate observation operators for
data-assimilation systems to efficiently link remotely
sensed ocean colour radiances with phytoplankton
biomass concentrations from models by using optical
modules as described in Fujii et al. (2007) and Ciavatta
et al. (2014). Another key development will be to ensure
consistent merging of ocean colour maps at the surface

with subsurface vertical profiles from a sparse Argo
network equipped with nitrate, oxygen and fluorescence
sensors.

Finally, it is worth noting that exploratory work has
been initiated recently by applying the concept of image
assimilation to ocean colour data (Gaultier et al. 2013).
This could be a promising way to refine the control of
eddies and associated mesoscale circulation from the phys-
ical space using ocean colour data assimilation into oper-
ational systems. It might also help to mitigate the
frequent problem of the low persistence of data assimilation
innovation impact. As a matter of fact, if the modification
of the biogeochemical fields is not supported by a concomi-
tant adjustment of the governing physical fields, often the
biological signal quickly fades away (e.g. blooms driven
by winter mixing).

Global ocean biogeochemical reanalyses of the ocean
colour era

A key challenge for the future will be to develop a capacity
to routinely deliver reanalyses of the biogeochemical state
of oceans and regional seas, combining ocean colour and
other relevant observations from satellites (e.g. SST, alti-
metry, surface winds, cloud coverage), in situ measure-
ments (e.g. T/S profiles, fluorescence, oxygen, pCO2,
nutrient concentrations) and coupled physical–biogeo-
chemical models. Such products will be unique to
monitor the impact of global change on marine primary
production, regional ecosystems, the role of oceans in
anthropogenic carbon storage, the occurrence statistics
and trends of harmful algal blooms etc.

The ocean colour era started with the CZCS satellite
mission in the late seventies, and since 1997 ocean colour
has been monitored almost continuously by SeaWiFS,
Envisat/MERIS and MODIS missions after an over 10-
year gap between 1985 and 1997 (Wilson, 2010). In spite
of significant progress in sensor technologies, algorithmic
tools and spatial resolutions, the production of long-term
time series needed to capture interannual to decadal
variability still requires a sustained effort to develop and
maintain the required ocean colour constellation and inter-
calibration between instruments (Antoine et al. 2005).
Additional opportunities for placing sensors on geostation-
ary platforms in synergy with polar orbiting missions
should be promoted (Ruddick et al. 2014) to enable the
observation of the fine, mesoscale to submesoscale signa-
ture of surface phytoplankton and its associated diel varia-
bility. A key scientific challenge is indeed to incorporate the
effect of those very fine space and time-scales on the local,
basin and large-scale biogeochemical budgets estimated by
integrative models (Lévy et al. 2012). In parallel to the
space component, a denser network of in situ data from
advanced autonomous platforms (e.g. BioArgo) will be
required to extrapolate vertically the surface information
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collected from ocean colour satellites into the entire
euphotic layer through assimilative models (Claustre
et al. 2010).

The sustained effort on biogeochemical monitoring has
to be paralleled by a targeted development of biogeochem-
ical models in order to allow the best possible utilisation of
novel data. For example, current operational biogeochem-
ical and lower trophic ecosystem models use very sophisti-
cated treatments of the hydrodynamics and fairly
sophisticated biology, but use grossly oversimplified treat-
ments of the optics. Most models used for global and
regional predictions are often driven by daily-averaged or
hourly above-surface irradiances and very simple analytical
formulations of light penetration through the water column.
Some recent models have begun to include feedbacks
between biology and hydrodynamics (Danabasoglu et al.
2006; Jochum et al. 2010), but still rely on very simple
treatments of the optics. Fujii et al. (2007) incorporated
spectrally resolved inherent optical properties (IOPs) into
a coupled physical–biogeochemical model (Chai et al.
2002) connected with a radiative transfer model (Eco-
Light-S) (Mobley, 2011). This fully coupled physical–bio-
geochemical–optical model simulates detailed and
spectrally resolved underwater light field that not only
can improve biological simulations but also can model
explicitly biological feedbacks to ocean temperatures.
The fully integrated model can be improved with direct
comparison of model-predicted and satellite-measured
remote-sensing reflectance, without the intermediate step
of converting satellite data to chlorophyll. The model
output also can be compared and improved with in situ
optical measurements on various platforms, such as
buoys, Argo floats, gliders or AUVs. Finally, all satellite
and in situmeasurements of optical variables can be assimi-
lated into a fully coupled physical–biogeochemical–
opticals model to constrain ecosystem conditions and
improve forecasts.

Ocean carbon cycle

Operational oceanography systems expanded to biogeo-
chemistry have the potential to contribute to ocean
carbon cycle research by providing (1) near-real-time
monitoring of surface ocean pCO2, pH and CO2 fluxes
and (2) multi-year reanalyses of the ocean carbon cycle.
These products will ultimately serve a variety of purposes,
such as environmental monitoring (e.g. of pH), yearly
global carbon cycle assessment (Global Carbon Project,
http://www.globalcarbonproject.org/), and academic
carbon cycle research. Since the first review of potential
contributions of operational systems to carbon cycle
research by Brasseur et al. (2009), the overall volume of
carbon system observations (ALK, DIC, pCO2, CO2 flux,
pH) has increased, and new data compilations have been
released. Despite this positive trend, data coverage is still

too sparse to consider operational carbon system data
assimilation. Since pCO2 is a function of salinity and temp-
erature, improved distributions of these variables and of
their temporal–spatial variability should translate into
increased model skill for pCO2. Coupled biogeochem-
ical–physical forecast systems could contribute to ocean
carbon-cycle research by providing ocean physical-state
estimates as forcing for the biogeochemical model com-
ponent. Modelled pCO2 is, however, very sensitive to
errors in salinity and temperature. Errors introduced by
data assimilation into ocean physics will be amplified in
carbon-related variables such as pCO2 (While et al.
2012). Shortcomings in current biogeochemical models
are an additional source of error of modelled pCO2.
Despite current limitations, the potential of assimilation
of pCO2 data into coupled physical–biogeochemical
models for improving modelled pCO2 distributions needs
to be emphasized. Recent efforts to produce maps of
surface ocean pCO2 by means of statistical techniques
(Landschützer et al. 2013) hold promise of an improved
data availability in the years to come.

Coupling up the food chain

The current set of modelling systems for the higher trophic
levels is described by a wide range of conceptual
approaches and purposes. One strong focal point here is
the development of systems built around the population
of single species that are commercially important, such as
the above-mentioned models for tuna and sand eel. On
the other side of the spectrum, there are the whole-system
approaches that can be largely divided into food-web and
size-spectrum approaches (Blanchard et al. 2012) assessing
ecosystem services in the wider sense. The food-web-based
models (Shin et al. 2004; Christensen et al. 2009) consider
extensive and complex food-web structures well beyond
the complexity level of current LTE models but are conse-
quently operating at coarser time and space scales than the
current operational systems offer and that may be required
for some important management applications. Size-spec-
trum models synthesize the energy transfer across the
primary producers to top predators in a much lighter frame-
work but lose information on taxonomical and functional
diversity beyond size. A step forward here may be the com-
bination of some of these approaches, similar to Fernandes
et al. (2013), who combined a bio-climate envelope model
with a size-spectrum approach, or Travers-Trolet et al.
(2014), who coupled a regional physical model to an
NPZD representation of the LTE and an individual-based
multi-species higher trophic ecosystem model to assess
the long-term impact of climate change on marine fish
distributions.

Some major issues concerning the end-to-end model-
ling from biogeochemistry to top predators are largely
still unaddressed (Rose et al. 2010). A main concern,
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particularly in the operational context, is that all of the
above approaches suffer from a substantial lack of data suit-
able for independent validation of their outputs in most
areas of the global ocean, an essential requirement in
order to demonstrate maturity for operational systems.
Another key point is the identification of the zooplankton
modules as the weak link in the coupled systems, as
these modules were often developed with emphasis on
the adequate description of the biogeochemical cycles,
but do not give a good representation of their role as prey
to higher-level predators.

Future research will consequently have to provide an
adequate assessment of these frameworks and approaches
as to which is most adequate for each operational context
in terms of forecast precision, relevance of the information
provided and the feasibility of implementation into oper-
ational systems in terms of computational requirements.
A significant step in this direction is currently being
pursued in the EU-FP7 Operational Ecology project
(OpEc, www.marine-opec.eu), where a series of near-oper-
ational forecasting systems for the physical, biogeochem-
ical and ecological state of the European Seas are
implemented and compared, bringing together the variety
of the above-mentioned approaches in one framework
that takes a strong focus on the operational delivery of rel-
evant and reliable ecological indicators.

Recommendations

Several demonstrations have been made recently, with
Lazzari et al. (2010), Ford et al. (2012) and Fontana et al.
(2013) showing that concepts of biogeochemical data
assimilation using state-of-the-art BOGCMs are getting
mature enough to be transitioned to operational centres.
The capacity for producing biogeochemical forecasts,
along with reanalyses, is a key requirement for the develop-
ment of biogeochemical/ecological applications and ser-
vices. However, several blocking points still need to be
considered which require further research:

. the identification of the appropriate level of complex-
ity that biogeochemical models need to include in
their representation of biological processes to prop-
erly ‘ingest’ the observed data;

. the objective characterization of the uncertainty of
BOGCMs associated with physical atmospheric
and ocean circulation forcings, unresolved space
and time-scales, and parameterizations of biogeo-
chemical processes and fluxes;

. the coupling of BOGCMs with bio-optical models to
assimilate the radiances observed by satellites in the
context of ‘the situation of the day’ instead of derived
products that often rely on climatologies (e.g.
chlorophyll);

. the development of coupled physical–biogeochem-
ical data-assimilation schemes;

. the development of ocean colour data-assimilation
methodologies that will be able to tackle highly
non-linear model responses and non-Gaussian prob-
ability distributions associated with ensemble
coupled physical–biological models, as well as, in
the case of multivariate assimilation schemes, to
ensure appropriate projection of observed fields
onto unobserved state variables using physically
balanced increments (While et al. 2012);

. the specification of relevant sets of metrics to assess
the scientific value of operational products, the
development of intercomparison exercises between
operational groups and the identification of weak-
nesses in the observing systems;

. the use of Observing System Simulation Exper-
iments to inform on the optimal architecture of an
observing system designed for biogeochemical data
assimilation and to identify biogeochemical products
that can be robustly provided;

. improvement in biogeochemical datasets for better
initial conditions and model validation.

Supplemental data and research materials

Supplemental data for this article will be hosted alongside
the article on tandfonline.com and can be accessed at
http://dx.doi.org/10.1080/1755876X.2015.1022350.
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