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Abstract

The model reduced 4D-Var (Vermeulen and Heemink, 2006) is investigated to
test its feasibility in ecosystem application. Ecological models are known for
their high nonlinearity and issues with non-differentiability. However, since the
method is performed in the reduced space, the implementation of the adjoint of
the tangent linear approximation of the original model is not required.

Twin experiments are conducted in a 1D ecological model. Surface phyto-
plankton data are used, with 30% log-normally distributed measurement error.
Three parameters are chosen for calibration. The method performs very well in
the setup where a perfect initial condition is used, as well as for the combined
parameter and initial condition estimation. A relatively well calibrated initial
condition contributes to accurate parameter estimations. Not accounting for the
wrongly assigned initial condition leads to incorrectly calibrated parameters.

Keywords: data assimilation, ecosystem, parameter estimation, initial
condition control, model reduced 4D-Var, twin experiment

1. Introduction

In the presence of environmental issues caused by the climate change and
eutrophication (Nixon, 1995; Hallegraeff, 1993, 2009, 2010; Pauly et al., 2002;
Gregg et al., 2003, 2005; Peperzak, 2003; Paerl and Huisman, 2008; Brush, 2008;
Schindler et al., 2008), ecosystem models capable to provide accurate predictions
are of high interest. Despite many modeling challenges (Doney, 1999; Jørgensen,
2008), ecological models have evolved to be considered as relevant predictive
tools. However, most sophisticated systems are not able to reproduce the reality
completely, therefore it is essential to integrate them with the available obser-
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vations. Data assimilation techniques serve as a tool to calibrate and improve
model accuracy by combining them with the data given by the measurements.

The ecological models though often very advanced and complicated are still
missing a unified set of rules, which would govern the whole system (Jørgensen,
2008; Los, 2009; Doron et al., 2011). This is compensated by the use of free
parameters in the process parameterizations (Doron et al., 2011). An impor-
tant source of uncertainties in ecosystem models is assigned to the poorly known
parameters. With a given observation set, these could be estimated through lab-
oratory experiments. However, when a large number of parameters is considered
it is much harder to manage its calibration manually. Moreover, the calibration
needs to be repeated every time a new ecosystem region is considered. Data
assimilation methods provide tools to estimate many parameters simultaneously,
with the possibility of accounting for their correlations.

There are two distinct classes of data assimilation methods, both capable
to account for imperfect parameters. One is the class of variational (inverse)
techniques, which searches for an optimal set of control variables, such that a
cost function which measures the distance between the model and observations
is minimized. The second class is represented by forward methods, which as-
similate data sequentially in time. Hence, they are often referred as sequential
methods. Their main target is to correct the estimated variables at every time
an observation becomes available. The variational techniques are mainly used for
parameter estimation, whereas the sequential methods are mainly used for state
estimation. However, both approaches can tackle the task of the other one, and
are equivalent for linear systems.

The variational techniques were successfully applied to improve the ecosys-
tem predictions. Several approaches have been used, such as the ecosystem state
estimation (Natvik et al., 2001), updating the input of a biological model by
improving its coupled hydrodynamical model (Fiechter et al., 2011). The most
common has been the calibration of the ecological parameters, where the adjoint
technique was widely used to obtain the model gradients necessary to minimize
the cost function (Fennel et al., 2001; Friedrichs, 2002; Zhao et al., 2005). Obtain-
ing the adjoint of the model may be sometimes complicated, therefore methods
which do not require the use of the gradient were also commonly used. This
includes techniques such as simulated annealing (Matear, 1995), or genetic al-
gorithms (Ward et al., 2010). However, when the number of parameters to be
estimated is increased, these methods become computationally more demanding
when compared to the gradient based techniques.

The sequential methods were also applied to perform data assimilation for
ecosystems, and were mainly used for state estimation. One of the first sequential
methods applied in ecosystem models was the Extended Kalman Filter (Carmillet
et al., 2001). Further, applications of the Ensemble Kalman Filter to ecosystems
became very common (Allen et al., 2002; Eknes and Evensen, 2002; Natvik and
Evensen, 2003; Simon and Bertino, 2009). For a detailed overview of sequential
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methods used in oceanography and ecology see Bertino et al. (2003). Gaussian
anamorphosis extensions of ensemble-based Kalman filters have been suggested
by Bertino et al. (2003) to tackle the problems of sub-optimality of the filter
raising from the non-Gaussian distributions of most of the biological variables
and parameters. These approaches can be easily applied in realistic configurations
(Simon and Bertino, 2009) and have been proved to be efficient tools to calibrate
poorly known parameters (Doron et al., 2011; Simon and Bertino, 2012) For a
detailed overview of data assimilation methods in application to biological models
see Gregg (2008).

In this work the aim is to estimate parameters and the initial condition of the
model, therefore a variational technique is a suitable choice. The method used
in this work is four dimensional variational data assimilation (4D-Var), which is
an adjoint method. It was first introduced in meteorology for the initial condi-
tion estimation (Le Dimet and Talagrand, 1986; Talagrand and Courtier, 1987).
It proved to be a powerful tool for ecosystem calibration. However, ecological
models become more and more sophisticated, and the number of their biologi-
cal components, as well as their parameters is increasing. Even simple ecosystem
models have strong nonlinear behavior. Moreover biogeochemical dynamics often
introduce nondifferentiability into the system. For such challenging environment
obtaining its adjoint becomes nontrivial. Also the model resolutions are much
finer than in the past, which results in large sizes of the model states. This intro-
duces a limitation for using the finite difference gradient approximations, since
these ones are not suitable for large problems.

A number of methods has been proposed to deal with this problem by obtain-
ing the adjoint in a reduced space (Vermeulen and Heemink, 2006; Cao et al.,
2007; Fang et al., 2009). Although the methods differ in their approach, all
are based on the proper orthogonal decomposition (POD), also known as the
Karhune-Loéve transform (KLT), principal component analysis (PCA) or the
method of empirical orthogonal functions (EOF) (Pearson, 1901; Shlens, 2009).
Although EOF-based methods are widely used in ecosystem data assimilation
(Nerger and Gregg, 2007; Carmillet et al., 2001; Lermusiaux, 2006), none of the
model reduced 4D-Var schemes have yet been used in ecological applications.

Based on a number of simulations of the original model, proper orthogonal
decomposition is used to obtain a reduced model. The model-reduced 4D-Var is
performed in the reduced space. Therefore, the implementation of the adjoint of
the tangent linear approximation of the original model is not required. Instead, it
is approximated by the adjoint of the tangent linear approximation of the reduced
model. The method is easily extended to the estimation of the initial condition,
hence the parameter calibration is coupled together with the initial condition
estimation.

Due to the limitations of the adjoint model development for ecosystems, such
approach may serve as an attractive tool for these applications. Therefore, the
aim of this work is to evaluate the feasibility of a reduced adjoint approach in cal-
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ibrating ecosystem models. The model-reduced 4D-Var proposed by Vermeulen
and Heemink (2006) was effectively used in several applications, such as ground-
water flow (Vermeulen et al., 2005), shallow-water flow (Altaf et al., 2009, 2010),
oil reservoir optimization (Kaleta et al., 2011), and morphodynamics (Garcia
et al., submitted). An advantage was shown especially for models characterized
by periodic behavior (Altaf et al., 2009). Since for these type of models, the
number of required model simulations to obtain the reduced model is relatively
small. Due to the seasonality ecosystem models do show periodic characteristics,
therefore this method serves as a potential tool for ecological applications.

The paper is organized as follows. First a brief description of a 1D Ecological
model is presented in Section 2. Next the variational assimilation methodology
is described in Section 3, with the incremental variational assimilation presented
in Section 3.1, and the model reduced 4D-Var methodology described in Section
3.2. Framework of the experiments is presented in Section 4. Results are shown
and discussed in Section 5, and finally the conclusions are presented in Section 6.

2. 1D Ecological Model

A 1D ecological model is used to illustrate the capabilities of the model re-
duced 4D-Var method in ecosystem applications. The model was first introduced
by Evans and Parslow (1985). It is a simple differential equation model of nutri-
ents N , phytoplankton P and herbivores H in a mixed layer of varying depth.
Eknes and Evensen (2002) extended the model by a vertical mixing term, which
resulted in a vertical dimension.

Eknes and Evensen (2002) replaced the terms corresponding to diffusion rates
for the concentrations of nutrients, phytoplankton and zooplankton, with a ver-
tical diffusion term of the form (∂/∂z)(Kz(z, M)(∂/∂z)). The Kz is the diffusion
coefficient parametrized with respect to the depth z and mixed layer depth M .
The smooth version of the mixed layer depth function M = M(t) and its rate
of change were used as described in Natvik et al. (2001). Further on, the mixed
layer depth is used as a physical input for the ecosystem model.

The equations describing the ecosystem components evolution are given by

∂N

∂t
= −

(
α(t, z, P )N

j + N
− r

)
P +

∂

∂z

(
Kz(z, M(t))

∂N

∂z

)
(1a)

∂P

∂t
=

(
α(t, z, P )N

j + N
− r

)
P − c(P − P0)H

K + P − P0

+
∂

∂z

(
Kz(z, M(t))

∂P

∂z

)
(1b)

∂H

∂t
=

fc(P − P0)H

K + P − P0

− gH +
∂

∂z

(
Kz(z,M(t))

∂H

∂z

)
(1c)

where α = α(t, z, P ) is the light-limited photosynthetic rate, and Kz = Kz(z, M(t))
is the depth dependent diffusion parameter. Both parameters are described in
detail in Eknes and Evensen (2002). The other parameters are listed in Table 1.
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Their values were calibrated according to Flemish Cap (47◦N, east of Newfound-
land, Canada).

Symbol Description Value Unit
c Maximum grazing rate 1.0 1/day
f Grazing efficiency 0.50
g Loss to carnivores 0.07 1/day
j Uptake half saturation 0.5 mmol N m−3

r Plant metabolic loss 0.07 1/day
K Grazing half saturation 1.0 mmol N m−3

P0 Grazing threshold 0.1 mmol N m−3

Table 1: Physical parameters, appropriate to Flemish Cap, used in the data assimilation ex-
periments. These are the same parameters as used by Eknes and Evensen (2002) and Evans
and Parslow (1985)

Figure 1 presents the yearly cycle of the model. The nutrient concentration is
constant at the bottom, which serves as an infinite pool of nutrient throughout
the whole year. With the vertical mixing term, the nutrients are mixed into the
biologically active mixed layer. Next, the nutrients are taken up by the phyto-
plankton during the spring bloom. Further the phytoplankton abundance and the
bloom duration are determined by the nutrient availability and the herbivorous
zooplankton grazing.

The three ecosystem components N(t), P (t), H(t) are defined on 20 layers,
which divide uniformly a water column of 200 meters deep. All together they
form a state vector x(t) = [N(t), P (t), H(t)], which consists in total of 60 values
at any time t. Further on, x(t) is used to write the model equations (1) in a
compact form as follows

∂x

∂t
= f(x, t) (2)

where f = [fN , fP , fH ], with each component corresponding to the right hand side
of the model equations (1), respectively.

3. Variational data assimilation

The main purpose of data assimilation methods is to combine theoretical
knowledge, given by the equations based on the laws of physics, together with
practical knowledge represented by measurements of the system. The theoretical
knowledge is represented in form of a model, which in this work is represented
by the three component ecological system given by (2). Further on the model
is discretized and its numerical approximation results in the following forward
model

xi = Mi(xi−1,α) (3)
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Figure 1: Yearly annual cycle: temporal evolution of Nutrients, Phytoplankton and Herbivorous
Zooplankton concentrations in a water column. All variables are in units: mmol N m−3.

where xi stands for the model state at time ti, Mi is the model that forecasts
the state from time ti−1 to ti, and α is a set of parameters which model Mi

depends on. The state vector xi represents the values of the modeled variables
specified for each of the grid cells. The main uncertainty is assumed to come
from unknown parameters and initial conditions, therefore no model error terms
were introduced. Namely, the model is assumed to be perfect.

The practical knowledge is represented by measurements of events which relate
to the model output xi. The observational operator, which translates the output
given by the model into an observational space, is given as follows

yi = Hi(xi,α) + εi (4)

where i = 1, .., ny, Hi(xi,α) is the observation operator at time ti. The output
of Hi(xi,α) is a theoretical counterpart of the measurement yi for a given model
state xi and set of parameters α, at the time ti. ny stands here for a number of
discrete times at which an observation occurred. The observations rarely repre-
sent the reality accurately, very often they carry a significant measurement error,
as well as a representativeness error. Therefore, an observational error at time
ti is introduced, and it is denoted as εi = εo

i + εr
i . εo

i stands for the “instru-
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ment” measurement error, and εr
i stands for the observational error due to the

representativeness. In the considered setup the measurements are generated and
assimilated at the model grid points, therefore in this work the representativeness
error is known, and it is equal to zero, i.e. εr

i = 0.
Once both sources of information has been brought into one space, it is pos-

sible to establish a distance between the model trajectory and the given obser-
vations. The idea is to find a set of optimal values of parameters, states, initial
conditions, inputs etc, which minimize these distances. The variables chosen
to be estimated, are usually referred to as control variables or a control vector.
Next, a cost function is defined which is a measure of all the distances along the
assimilation time for a given set of control variables c

J(c) =
1

2
(c− cb)TB−1

c (c− cb) +
1

2

ny∑
i=1

(Hi(xi,α)− yi)
TR−1

i (Hi(xi,α)− yi) (5)

where cb is a prior (background) knowledge about the control variables c, Bc is
a background error covariance matrix, which represents uncertainty of the prior
(background) information about the control variables c, Ri is an observation
error covariance matrix representing uncertainty about the observations taken at
time ti and uncertainty about the observation operator at time ti. Sometimes,
the observations are not enough to explain the entire control variable domain.
Therefore the distance from their background values need to be controlled to keep
estimated variables in their range.

In order to minimize J , the gradient of J with respect to the control variables
is needed. In the following section the cost function J is formulated in an incre-
mental approach, and by means of the adjoint technique, its gradient with respect
to the control variables is derived. The incremental technique is an essential link
in understanding of the model-reduced 4D-Var technique, which is explained in
the consecutive section.

3.1. Incremental 4D-Var

In the incremental 4D-Var approach (Courtier et al., 1994) the model is lin-
earized with respect to the control vector around its best guess. Next the cost
function is minimized being constrained on the linearized version of the model
(3). The set of control variables which minimizes the cost function is the opti-
mal solution in the linearized space of solutions. However, if the full model is
nonlinear the same solution will only be suboptimal for the full space. Therefore
the procedure needs to be repeated: the suboptimal solution becomes a new best
guess, and the model is again linearized. The procedure repetitions are called
outer loops. The minimization iterations within each outer loop are called inner
loops. With stronger nonlinearities of the model, the number of outer loops need
to be increased.
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An advantage of the incremental approach over the classical one, is that once
the model is linearized, then the gradient of the model remains constant within
each outer loop. Hence, it does not need to be recalculated at every inner loop,
unlike in the classical approach.

First the model equations (3) are linearized with respect to the control vector,
which in this work consists of parameter vector α and the initial condition x0.
The linearization is considered around the best guess which in this case is the

background value of the control vector cb =
[
xb

0, α
b
]T

δxi =
∂Mi(x

b
i−1, α

b)

∂xi−1

δxi−1 +
∂Mi(x

b
i−1, α

b)

∂α
δα (6)

where xb
i stands for the background model output, i.e. originated at the back-

ground initial condition xb
0 and background parameters αb. By introducing the

following notation

Mα
j =

∂Mj(x
b
j−1, α

b)

∂α
(7a)

Mx
j =

∂Mj(x
b
j−1, α

b)

∂xj−1

(7b)

and
Mx

i,j = Mx
i ·Mx

i−1 · ... ·Mx
j , j = 1, ..., i (8)

the linearized model can be rewritten as follows

δxi = Mx
i,1δx0 +

i∑
j=1

Mx
i,j+1M

α
j δα (9)

where Mx
i,i+1 = I, and I is an identity operator of the same size. For simplicity

the following notation is introduced

Gα
i =

i∑
j=1

Mx
i,j+1M

α
j (10)

Then the linearized model (9) can be rewritten as

δxi = Mx
i,1δx0 + Gα

i δα (11)

Notice, that Gα
i is the sensitivity of the model with respect to the parameter

change, and Mx
i,1 is the sensitivity of the model to the initial condition change,

both at the time ti.
Often it happens that the observations are nonlinearly related with the model

state or parameters. In that case also the observation operator needs to be
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linearized with respect to the control vector. Hence

Hi(xi, α) ' Hi(x
b
i ,α

b) +
∂Hi(x

b
i ,α

b)

∂xi

δxi +
∂Hi(x

b
i , α

b)

∂α
δα (12)

Next, by introducing extra notation

Hx
i =

∂Hi(x
b
i , α

b)

∂xi

(13a)

Hα
i =

∂Hi(x
b
i , α

b)

∂α
(13b)

and combining the equation (12) with the relation (11), the linearization of the
observation operator can be written in terms of the increments δx0 and δα, i.e.

Hi(xi,α) ' Hi(x
b
i ,α

b) + Hx
i M

x
i,1δx0 + (Hx

i G
α
i + Hα

i )δα (14)

Then, let δc = [δx0, δα]T , and let the sensitivity of the observational operator
with respect to δc be defined as

Hc
i = [Hx

i M
x
i,1, Hx

i G
α
i + Hα

i ] (15)

Thus, the approximation of the observational operator becomes

Hi(xi,α) ' Hi(x
b
i , α

b) + Hc
i δc (16)

Now, by using the approximation of the observational operator (16) and linearized
control vector c = cb + δc, the cost function (5) is approximated by

Ĵ(δc) =
1

2
δcTB−1

c δc +
1

2

ny∑
i=1

(
Hc

i δc + di

)T
R−1

i

(
Hc

i δc + di

)
(17)

where di = Hi(x
b
i , α

b)− yi, and Ĵ is the incremental 4D-Var cost function. The
value Ĵ(δc) is approximating the value of the nonlinear cost function around the
background control vector J(cb + δc). Note, the incremental cost function Ĵ
depends directly on δc, which is therefore considered the control variable in the
incremental formulation.

The next step is the gradient formulation. To this end the incremental change
of the cost function (17) has to be investigated with respect to the change of the
increment δc. According to the adjoint technique for calculating gradients (Le
Dimet and Talagrand, 1986; Talagrand and Courtier, 1987), it results in the
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following gradient of the cost function Ĵ with respect to the increment δc

∇δcĴ(δc) = B−1
c δc +

ny∑
i=1

(Hc
i )

TR−1
i (Hc

i δc + di) (18)

The incremental 4D-Var is a very useful tool to estimate parameters and initial
conditions, as well as other types of inputs of the model. However, even though
the model is linearized in this approach, which significantly improves the efficiency
of the method, the gradient of the model states still needs to be evaluated for
every outer loop. The following section describes a technique, where the gradient
is approximated using a reduced model approach.

3.2. Model Reduced 4D-Var

The model reduced 4D-Var (Vermeulen and Heemink, 2006) is a method pro-
posed to avoid the implementation of the adjoint of the tangent linear approxi-
mation of the original model. The key idea of the method is the way it tackles
the evaluation of the derivative of the model with respect to the state. With
an orthogonal projection matrix P, the derivative in question is mapped into a
smaller subspace. Then it is considered as the directional derivative in the direc-
tions, specified by the columns of P. Construction of the matrix P assures that
essential information is captured in a small number of columns, hence the finite
difference approximation becomes feasible.

∂Mi(x
b
i−1,α

b)

∂xi−1

P ' Mi(x
b
i−1 + ε P,αb)−Mi(x

b
i−1,α

b)

ε
(19)

In order to incorporate the property (19) into the linearized model equations (11),
the equations (11) as well need to be projected into the reduced space. Hence
the following is obtained

PT δxi = PT ∂Mi(x
b
i−1, α

b)

∂xi−1

PPT δxi−1 + PT ∂Mi(x
b
i−1, α

b)

∂α
δα (20)

where PT maps the model states into a smaller subspace, whereas P maps the
reduced states back into the full space. The columns of P are referred as patterns.
P is of the size nx × nP, where nx is the size of the state vector and nP is the
size of the reduced space (number of patterns). Matrix P is constructed using
the POD method which guarantees the best reconstruction of the model states
in the root mean squared error sense (Antoulas, 2005; Kaleta, 2011). Hence, the
following values ||δxi−PPT δxi||2 are minimal, where || · ||2 denotes the L2 norm.
Appendix A explains how the projection matrix P is obtained.

The projected model increments are denoted as δzi = PT δxi, where δzi is the
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reduced model increment. Hence the equation (20) is rewritten as follows

δzi = PT ∂Mi(x
b
i−1, α

b)

∂xi−1

Pδzi−1 + PT ∂Mi(x
b
i−1, α

b)

∂α
δα (21)

Matrix P is used to map the variables δzi from the reduced space back into
the full space, i.e. δx̂i = Pδzi, where δx̂i is an approximation of the full space
increment, and ||δxi−δx̂i||2 is relatively small. Next, by introducing the following
notation

Nx
i = PT ∂Mi(x

b
i−1,α

b)

∂xi−1

P (22a)

Nα
i = PT ∂Mi(x

b
i−1,α

b)

∂α
(22b)

the equation (21) is rewritten as follows

δzi = Nx
i δzi−1 + Nα

i δα (23)

Next, analogically to (8) the following product is introduced

Nx
i,j = Nx

i ·Nx
i−1 · ... ·Nx

j (24)

and the reduced tangent linearized model (23) is rewritten as follows

δzi = Nx
i,1 δz0 +

i∑
j=1

Nx
i,j+1N

α
j δα (25)

where Nx
i,i+1 is an identity operator in the appropriate size. Analogically to the

previous section the following notation is introduced

Ĝα
i =

i∑
j=1

Nx
i,j+1N

α
j (26)

Using the property δx̂i = Pδzi, the linearized model can be rewritten as follows

δx̂i = PNx
i,1 δz0 + PĜα

i δα (27)

The cost function in the model reduced approach takes the same form as
the incremental cost function in the non-reduced approach, see equation (17).
However, the control variable increment is now expressed as δc = [δz0, δα]T ,
and the linearized observation operator is formulated accordingly to the reduced
space as follows

Hc
i = [Hx

i PN
x
i,1, Hx

i PĜα
i + Hα

i ] (28)
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The gradient of the cost function in the model reduced approach is just as ex-
pressed in equation (18), with appropriate δc and Hc

i .

4. Framework of the experiments

Model reduced four dimensional variational data assimilation is implemented
for the 1D ecological model. Three parameters of interest are considered for
estimation: grazing efficiency (f), loss to carnivores (g) and plant metabolic loss
(r), the choice as in Simon and Bertino (2012). In the experiments where the
initial condition is assumed to be unknown, it is also included as one of the control
variables.

4.1. Twin experiment setup

Three twin experiments are presented. Each is designed, such that the same
true solution is used for all setups, as well as the same set of observations. For each
setup the true parameter set is obtained by shifting the background parameter
values f, g, and r, by 50%, 43% and 43% of each prior value respectively. Hence,
the following set of the true parameters is obtained f = 0.75, g = 0.10, r = 0.10.
The background parameter values used are equal with the ones listed in the Table
1, and they are used as the starting values for each data assimilation experiment.
Five year assimilation window is used for all experiments, where each is preceded
with one year of spin up, used to obtain the initial conditions. The same true
initial condition is used for all experiments. Whereas the initial condition assigned
within data assimilation varies depending on the experiment setup.

X0

Spin Up Assimilation Window Time

X0 

t

B

M(X0,α )
B

M(X0,α )
t

M(X0,α )
BB

M(X0,α )
tt

X0

M(X0,α )
Bt

Truth

Prior PerfIC

Prior WrongIC

Figure 2: Scheme of the twin experiment design
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Two initial conditions are used to set up the data assimilation experiments:
the prior and the true initial condition. Both are generated by running the model
for a period of time (the spin up), one year in this case, where each is originated
with the same values. After one year of simulation they arrive at different so-
lutions. The discrepancy comes from distinct parameters assigned. The true
initial condition is obtained using the true parameter set, whereas the prior ini-
tial condition is generated with the background parameters, see the scheme of
the experiment design in Figure 2. Since the prior initial condition differs from
the true one, it is also referred as wrong initial condition.

In the first experiment only parameters are estimated, whereas the initial con-
dition is assumed to be perfect. Therefore, the true initial condition is assigned
within data assimilation experiment. The purpose of this experiment is to exam-
ine whether the method calibrates the parameters correctly in the environment
where the initial condition does not introduce extra uncertainty. This experiment
is referred as 4DVar-Par&PerfIC.

In the two other experiments the prior initial condition is used to set up data
assimilation. This way the calibration of the parameters needs to be coupled
with the control of the initial condition in order to obtain an optimal update of
the parameters. This approach is covered by the second experiment, and it is
referred as 4DVar-Par&IC. The prior initial condition is used here to give starting
values for the estimation of the initial condition. It is expected, that the control
of the initial condition is essential. However, to see its importance, and compare
to a situation where it was not accounted for, the third experiment is performed.
In this setup only parameters are estimated while the prior initial condition is
assigned, hence its name 4DVar-Par&WrongIC.

Typically the initial condition has an impact on the model only at the begin-
ning of the simulation, then it is ”forgotten” and the rest of the time is governed
only by the parameters. Therefore, estimating the initial conditions under as-
sumption of wrong parameters is not expected to work, unless it is performed
for the assimilation window covering a period when the initial condition has an
influence on the model (here it is about one year, although it may vary for other
models). To illustrate that a fourth experiment is presented, where parameters
are fixed at their prior values, and only the initial condition is estimated during
the assimilation. The experiment is called 4DVar-WrongPar&IC.

4.2. Observations

The common source of measurements in ecology are satellite images of chloro-
phyll, which is further processed into the surface phytoplankton concentration.
Hence, in the experiments the observations are generated only for phytoplankton
concentration, for the first and second layer (the surface layers) of the model. The
measurements are generated using the true solution with log-normally distributed
observational noise (Campbell, 1995).
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Commonly the observation error in satellite surface chlorophyll data is as-
sumed to be around 30% of the data (Gregg and Casey, 2004). In these ex-
periments, we assume that the error in the surface phytoplankton concentration
follow the same rate. Observations are assumed to be available every four days
of the assimilation window. The measurement error is assumed to be known
within the experiments. Hence, the error covariance matrix R contains the real
observation errors on its diagonal, whereas the off diagonal terms are equal to
zero.

4.3. Background error covariance matrices
The background error covariance matrix Bc used in the experiments is defined

as follows

Bc =

[
Bα 0
0 βBx0

]
(29)

where Bα is the background error covariance matrix for the parameters, Bx0

is the background error covariance matrix for the initial condition, 0 is used
symbolically to represent zero matrices in appropriate sizes, β is used as a scaling
factor to balance the importance between the two background components while
minimization, in this work β = 0.01. Bα contains the parameter variances on its
diagonal, and its off diagonal terms are equal to zero. Hence, the parameters are
treated independently within the data assimilation experiments. Bx0 is a block
diagonal matrix defined as follows

Bx0 =




BN0 0 0
0 BP0 0
0 0 BH0


 (30)

where BN0 ,BP0 ,BH0 stands for the error background covariance matrices for Nu-
trients, Phytoplankton and Herbivorous Zooplankton respectively. Each of these
matrices were generated using the Gaussian covariance function with character-
istic length scale equal to 50 meters (”squared exponential” in Rasmussen and
Williams (2006)).

4.4. Minimization
The minimization of the cost function was performed using M1QN3 Quasi-

Newton method described and implemented by Gilbert and Lemaréchal (1989).
Since it is unconstrained type of minimization, the control variables were trun-
cated in case of exceeding their domain after each outer loop minimization. The
parameter bounds were chosen as follows: 0.1 < f < 1, and 0.01 < g, r < 0.15,
whereas the initial values of the states were constrained by 0 and 20 mmol N
m−3. In this relatively simple model the control variables rarely needed to be
truncated. However, in larger applications it is advisable to use more sophisti-
cated tools to constrain the estimates, for example the anamorphosis function
(Simon and Bertino, 2009).
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4.5. Reduced model setup

In order to obtain the reduced model described in Section 3.2 the projec-
tion matrix P is created (see Appendix A). To this end, an ensemble of model
dynamics is generated by perturbing each parameter of interest separately, and
collecting the corresponding model output. Each of the estimated parameters is
perturbed by a fixed amount of 25% of the parameter value, and for each pertur-
bation a separate five years model simulation is performed. Then the snapshots
are collected at every 2 days, which results in 913 snapshots in time, for each
parameter. The snapshot collection is used to create a covariance matrix. Next,
its most significant eigenvectors create projection matrix P.

In order to account for the model dynamics due to initial condition variability,
also a perturbation of the initial condition should be included in the snapshots.
However, in this work the misfit in the initial condition was generated by per-
turbing the parameters and running the model for a certain amount of time (see
Figure 2). This way the perturbation in the initial condition remained physical.
Therefore, here the snapshots obtained from the perturbed parameters are enough
to represent the dynamics for both the initial condition and the parameters.

If the state variables have different magnitudes, then taking the snapshots
for all of them together to create the covariance matrix will lead to a loss of
information. Namely, the eigenvalue decomposition will detect the dynamics of
the state concentration with the highest magnitude as the most relevant, whereas
the rest of the model state dynamics will be neglected. There are two ways to
overcome this problem: (1) transform the states variables such that each of them
is scaled to be of the same magnitude, (2) create the covariance matrix for each
of the model constituents separately (Kaleta et al., 2011). The first approach
is likely to result in a smaller number of the significant eigenvectors, and since
it links all the substances together, it is also expected to improve the initial
concentration estimations. The second approach is more generic since it does not
need the information about the magnitudes of the model states. Although, its
construction does not account for the correlations between the model states, it
does not cause the loss in the accuracy of the adjoint approximation. Note, both
approaches are expected to perform equivalently for the directional derivative
approximations, since these are calculated for each substance separately in either
case. Therefore, both approaches are equivalent in their performance of the
adjoint approximation. In this work we follow the second approach.

The snapshot collection is used to create a covariance matrices for each of
the model concentration separately. Next a selection of their most significant
eigenvectors create projection matrices PN ,PP ,PH . Further on, the general
projection matrix P is created by placing each matrix block-wise on a diagonal,
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resulting in the following pseudo-orthogonal matrix

P =




PN 0 0
0 PP 0
0 0 PH


 (31)

The reduced model is chosen to carry 99% of the information (A.8) of the
full model. With every outer loop the reduced model is recreated, hence the
number of patterns corresponding to the selected amount of information may
vary. However, in this work the number of patterns does not fluctuate much. For
Nutrients it always results in 4 patterns, for Phytoplankton in most of cases it is
3 patterns, while very rarely 2 or 4, and the number for Herbivorous Zooplankton
varies between 2 and 4 patterns, with predominance of 4. The converging number
of patterns in all presented experiments is 4, 3 and 4 respectively for N , P and
H. Thus the total number of patterns results in most of cases to 11.

The 60 values corresponding to the model state vector are represented in
the reduced space by about 11 values (the exact number depends on the total
number of patterns). Therefore, the total size of the control vector consisting of
parameters and initial condition is reduced from 63 to only 14 (11 patterns and 3
parameters). Number of model runs needed to perform each outer loop is equal
to the total number of patterns (about 11), plus the number of parameters (3)
and plus one background run, which sums up to about 15 model runs per one
outer loop.

5. Results and Discussion

The results of the experiment 4DVar-Par&PerfIC shows that the method deals
very well with the calibration of the parameters, when the initial condition is
known. The challenge of this experiment was the recovery of the true parame-
ters, since these were strongly biased from their prior counterparts. Within 11
outer loops the method converged obtaining a good accuracy of the estimated
parameters, their percentage error was reduced from about 30% down to 0.06%
0.07% 0.097% respectively for f , g and r. Since the parameters were the only
source of misfit in this experiments, it is expected that their well calibrated values
will assure good model match with the observations (Figure 7). This is also con-
firmed by the final value of the cost function, which converges approximately to
its expected minimum given by 456, which is the half of the observation number
(Tarantola, 1987), see Figure 4. Well calibrated parameters assured also good
match of the model with the truth for the layers and variables which were not
measured, for the reference see the water column profiles in Figure 5, and the
root mean square error of the state variables plotted as the time series in Figure
9.

Based on the experiment 4DVar-Par&PerfIC it can be concluded that once the

16



Parameters
Cost Fun #OL

f g r
Prior 0.5000 0.0700 0.0700 4.29e+5

+50% +43% +43%
Truth 0.7500 0.1000 0.1000
Perfect Initial Condition Setup
4DVar-Par&PerfIC 0.7496 0.0999 0.1001 436.13 11
Perturbed Initial Condition Setup
4DVar-Par&WrongIC 0.9933 0.1526 0.1049 1196.49 9
4DVar-Par&IC 0.7266 0.0947 0.0997 451.27 30
4DVar-WrongPar&IC - - - 3.19e+5 1
Number of observations 2 × 456

Parameter Percentage Error
Prior 33.33 30.00 30.00
Perfect Initial Condition Setup
4DVar-Par&PerfIC 0.06 0.07 0.097
Perturbed Initial Condition Setup
4DVar-Par&WrongIC 32.44 52.65 4.94
4DVar-Par&IC 3.12 5.27 0.34

Table 2: Summarized results from the experiments

initial condition is known, the parameters can be easily calibrated. Therefore, in
the next experiment, where both parameters and initial condition are perturbed,
the main challenge was the control of the initial condition. The results of its
estimation are presented in Figure 6, which shows quite good performance. The
best match can be seen for the phytoplankton initial concentration, the zooplank-
ton also is performing quite well, however, the initial values of nutrients moved
slightly away from its prior towards the wrong direction. The best performance
of the phytoplankton is expected, since this variable is the only one measured.
The performance of the initial condition estimation for the other state variables
could be improved by accounting for their correlations in the error covariance
matrix Bx0 defined in equation (30).

The model matched the observations quite well, as shown in blue in Figure
7. Only during the first assimilation year there is a loss in the bloom magnitude,
which results from the underestimated initial nutrient concentration. However,
the general accuracy of the initial condition was good enough to contribute to
good calibration of the parameters, as shown in Figure 3. They were not as pre-
cise as in the experiment 4DVar-Par&PerfIC, although they obtained relatively
good accuracy, with the parameter percentage errors 3.12%, 5.27% and 0.34%
respectively for f , g, and r. Similarly the model performance outside of the mea-
sured areas is also slightly worse than the previous experiment, however it does
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Figure 3: Parameter convergence shown within the outer loops for all three experiments to-
gether.
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Figure 4: The cost function shown within the outer loops for all three experiments together (it
was enlarged for clarity). The cost function of the experiment 4DVar-WrongPar&IC was too
large, therefore it was removed for the clarity of the image.

perform quite well as shown by water column plots in Figure 5, and at the root
mean square errors plots in Figure 9.

Although 30 outer loops are plotted for this experiment, the cost function sta-
bilizes around its expected minimum much earlier. Already after the tenth outer
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Figure 5: Water columns representing the concentrations of the state variables for each experi-
ment. The results are presented at the end of the bloom of the second year cycle (day 545). In
gray is the prior (no data assimilation) model output, in black is the truth, in magenta is the
experiment 4DVar-Par&PerfIC, in blue is 4DVar-Par&IC and in green is 4DVar-Par&WrongIC.
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Figure 6: The performance of the initial condition estimation in the experiment 4DVar-Par&IC.
The dashed gray line represents the prior initial condition, in black is the true one, the thin
gray lines are the initial conditions resulting from the consecutive outer loops, the final outer
loop corresponds to the 4D-Var estimation, and it is shown in red.

loop the cost function attains a value of 463.42, after which the cost function drop
is not anymore that significant, see Figure 4. Thus, the outer loop minimization
could have been terminated already around 13 - 17 outer loops, without loss in
the control variable accuracy, since these also attained relatively rigid estimations
already in the early stage of the minimization.

For a comparison the experiment 4DVar-Par&WrongIC was conducted where
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Figure 7: Phytoplankton concentration shown at the surface layer of the water column. The
upper plot presents the whole five year assimilation window, and the lower plot magnifies the
first two years for a better view.

only parameters were estimated within the wrong initial condition framework.
Within 9 outer loops the cost function converged to its minimum. However, the
parameters did not converge to their true values. Their percentage errors are
32.44%, 52.65%, and 4.94% respectively for f, g and r, whereas the starting
percentage error was around 30% for all three parameters, as listed in Table 2.
Only parameter r performs reasonably well, whereas the other two parameters
obtain convergence at wrong values (see Figure 3). The incorrectly adjusted pa-
rameters compensate for the wrong initial condition to match the misfit between
the model and the measurements, which results in quite good fit, as shown in
Figure 7. However, the model performance for the unobserved areas, is much less
accurate when compared to the experiment 4DVar-Par&IC. For reference see the
water column plots in Figure 5, and where it is particularly visible, at the root
mean square errors shown for the last assimilation year in Figure 9. It confirms
that the control of the initial condition along with the parameters plays an im-
portant role in order to accurately calibrate the parameters. See Table 2 for the
summary of the results from all three experiments.

Estimation of the initial condition alone with wrongly assigned parameters
(4DVar-WrongPar&IC) failed, as shown by the root mean square error of the
initial condition in Table 3, as well as indicated by very high cost function value
shown in Table 2. Also the root mean square error of the initial condition, as
shown in Table 3, illustrates that the method performs much worse when pa-
rameter estimation is excluded. That confirms the importance of the parameter
calibration, particularly for experiments for which the assimilation window cover
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RMSE Initial Condition N P H
4DVar-Par&IC 1.4160 0.1310 0.2579
4DVar-WrongPar&IC 4.1400 0.5325 105.8000

Table 3: Comparison of the initial condition estimation for 4DVar-Par&IC and 4DVar-
WrongPar&IC. RMSE stands here for the root mean square error of the initial condition
estimation, and it has been normalized with respect to the prior RMSE.
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Figure 8: Root mean square error (RMSE) of Phytoplankton (depth averaged) normalized
with respect to the prior RMSE. Two experiments are compared: 4DVar-Par&IC and 4DVar-
WrongPar&IC. The dashed line indicates value equal to one, and it is plotted for a reference.
The results are plotted as a time series for five years assimilation window.

a longer period of time. That can be explained by the limited memory of the
initial condition. In this model the initial concentrations have an impact on the
model simulation mainly during the first year, after that it is ”forgotten” and
the model is governed only by the parameters. This phenomena can be well
observed in Figure 7, as well as in Figure 8 where the model output of the ex-
periment 4DVar-WrongPar&IC is merging together with the background model
simulations already starting from the second year. Therefore, the initial condi-
tion is incapable of explaining the measurements assimilated during the last four
years of the assimilation window. Hence, the method is unable to lower the cost
function substantially in this case. That also results in wrong initial condition
updates, which in consequence gives a very poor model output during the first
year. Such experiment is expected to perform better for a shorter assimilation
window (particularly in this case it would be one year). Due to very poor perfor-
mance of this experiment, from now on the focus will be only on the remaining
three experiments.

There are tendencies which are common for all three experiments. While
fitting the model curve to the given phytoplankton data, the first feature to be
fitted is the beginning of the bloom. Afterwards, the magnitude and the time
duration of the event can be adjusted. In the considered case, the plant metabolic
loss (r) is the only parameter responsible for the start of the bloom. Therefore,
the parameter r is always the first parameter to converge. The other two pa-
rameters will converge, after the beginning of the bloom has been captured. In
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Figure 9: Root mean square error for each of the state variables plotted as a time series (depth
averaged), shown for the last assimilation year, all three experiments together.

the given setup of the twin experiment the start of the bloom is quite well pro-
nounced despite the measurement noise. Therefore, the parameter r achieves a
good accuracy even though observations contain 30% of error. Furthermore, the
parameters f and g influence mainly the magnitude and shape of the phytoplank-
ton bloom, which is not easily detected from a noisy data. Moreover, these two
parameters correspond to the Zooplankton concentration (see model equations
(1)), therefore, they both influence indirectly the Phytoplankton concentration.
Hence, as only the Phytoplankton data is given, the two parameters become con-
ditionally dependent, and thus it is harder to estimate their two values in the
right proportions, especially when very noisy measurements are used. Account-
ing for their dependence in the background error covariance matrix (29) could
address this problem to improve the accuracy, as well as the speed of convergence
of these two parameters.

Until now all experiments have been performed using 99% of information to
build the reduced model. Additional experiments have been performed to show
the performance of the method with different amount of information recovered,
see Table 4. The twin experiments were performed using the following true
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Parameters Cost
#OL

f g r Function
Prior 0.5 0.07 0.07 4.24e+5
Truth 0.7 0.1 0.1
4DVar-60% 0.4810 0.0717 0.1032 787.94 2
4DVar-75% 0.5737 0.0776 0.0920 508.74 3
4DVar-90% 0.4724 0.0700 0.0996 469.02 6
4DVar-95% 0.6737 0.0934 0.0995 454.82 11
4DVar-99% 0.6880 0.0962 0.0996 447.77 30
Number of observations 2 × 456

RMSE Initial Condition # Patterns (OL-average)
N P H Total N P H

4DVar-60% 1.01 0.32 0.04 3 1 1 1
4DVar-75% 1.02 0.37 4.49 3.89 1.67 1.22 1.00
4DVar-90% 1.37 0.19 3.63 5.67 2.42 1.92 1.33
4DVar-95% 2.02 0.10 0.25 7.06 3.00 2.06 2.00
4DVar-99% 1.72 0.16 0.35 10.92 4.00 3.16 3.76

Table 4: Summary of the experiments where different amount of information is recovered to
build the reduced model. The number of patterns may be different for each outer loop, therefore,
here it has been averaged over all outer loops. RMSE stands here for the root mean square
error of the initial condition estimation, and it has been normalized with respect to the prior
RMSE.

parameters: f = 0.7, g = 0.1 and r = 0.1. The Perturbed Initial Condition Setup
was used, where the parameters were estimated along with the initial condition
(4DVar-Par&IC).

As it was expected, when the amount of information decreases, then less outer
loops are needed to attain convergence. Whereas the cost function consistently
increases when the quality of the reduced model decreases, which indicates less
accurate model match with the data. The results of the control variable estima-
tion also encourages to use as high amount of information as affordable. Although
there are some fluctuations along the general trend, the overall tendency is such
that the more information is retrieved, the better they are calibrated. Similarly
to the previous experiments, the most accurate estimations are shown for the pa-
rameter r. The remaining two parameters f and g are more difficult to estimate,
which is again caused by their interfering effects in Equation (1c). Although
their estimates maintain the tendency to move towards the correct values, there
remains more fluctuations in their updates.

The estimation of the initial condition was presented in terms of the root mean
square error normalized with respect to its corresponding prior error. This way
values below one correspond to an improvement in the initial condition, and val-
ues above one indicate deteriorations. Here, similarly as in previous experiments,
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there is always a good performance for the estimation of the initial Phytoplank-
ton concentration. To a certain extent, the initial Phytoplankton estimates are
consistent with respect to the amount of the recovered information. However,
the control of the other two values fluctuate more with respect to the quality of
the reduced model. Such behavior is expected, since these two state variables are
not observed, and they were already difficult to estimate when 99% information
was recovered.

To illustrate the robustness of the method an experiment has been performed
for which an ensemble of 15 different prior parameter sets has been randomly
generated. Each of them was used as the prior set of parameters to initialize
15 different data assimilation experiments. Each twin experiment used the same
reference solution, which was generated with the following true parameter set:
f = 0.7, g = 0.1 and r = 0.1. The experiments were performed using the
Perturbed Initial Condition Setup, where the parameters were estimated along
with the initial condition (4DVar-Par&IC). The measurements were regenerated
for each experiment in order to show robustness of the results with respect to the
randomness in the observation noise.

Parameters Cost Function
#OL

f g r Prior 4D-Var
Truth 0.7 0.1 0.1
4DVar-1 0.5757 0.07503 0.09981 1.2223e+3 479.66 7
4DVar-2 0.6829 0.09207 0.09905 5.4997e+6 536.34 40
4DVar-3 0.6836 0.09591 0.09973 4.5837e+5 438.63 40
4DVar-4 0.6474 0.08820 0.09923 6.7982e+6 505.99 14
4DVar-5 0.6870 0.09634 0.09972 5.8290e+5 439.58 40
4DVar-6 0.6498 0.08755 0.09888 3.8433e+5 516.33 12
4DVar-7 0.6700 0.09405 0.09984 3.4332e+6 444.73 59
4DVar-8 0.6239 0.08491 0.09943 1.7548e+5 435.34 9
4DVar-9 0.6709 0.09387 0.10030 2.4162e+4 484.31 30
4DVar-10 0.6787 0.09097 0.09899 1.3607e+7 545.24 36
4DVar-11 0.6278 0.08531 0.09946 8.5052e+4 465.78 9
4DVar-12 0.7290 0.10290 0.10030 1.2229e+5 439.03 61
4DVar-13 0.6979 0.09976 0.10040 1.2038e+3 470.36 60
4DVar-14 0.7654 0.11150 0.10010 4.8201e+5 470.79 60
4DVar-15 0.7160 0.10060 0.09976 1.0553e+8 529.14 60
Number of observations 2 × 456

Table 5: Summarized results from the ensemble of 15 experiments.

The prior parameters were drawn according to log-normal distribution with
the mean equal to the background parameter values as listed in Table 1, and the
error variance equal to 25% of the parameter value.
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Figure 10: Parameter estimations shown for the ensemble of 15 experiments. The randomly
generated background parameters are plotted in gray, the 4DVar estimates are shown in color
(each experiment in a different color), the black line represents the true parameter values.

The Figure 10 shows the resulting estimations of the parameters for the ensem-
ble of 15 twin experiments. Almost in every experiment the parameters converge
to their true values, showing an improvement with respect to their prior parame-
ter values. The experiment number 10 is an exception, where estimated value of
parameter g is slightly worse compared to its background value. However, both
the prior and the estimated values are still relatively close to the true parameter
value. Similarly as in the previous experiments, the parameter r is much more
accurately estimated, than the parameters f and g. This behavior is expected,
and it was explained along with the previous experiments.
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Figure 11: Root mean square error (RMSE) of the initial condition estimations normalized with
respect to the prior RMSE in the initial condition. The results are shown for the ensemble of 15
experiments. Each color represents the resulting RMSE corresponding to a different experiment
number. The black line is drawn at the value equal to one for reference.

The good performance of the parameter estimation does not always corre-
spond to the well estimated initial conditions. Figure 11 shows the root mean
square error (RMSE) obtained in the initial condition estimations. The RMSE
was normalized with respect to the RMSE in the prior initial condition. There-
fore, the RMSE value below one represents an improvement with respect to the
prior initial condition, and the values above one represent the initial condition
estimation which was worse than its prior. Similarly to previous experiments, the
best performance is shown for the Phytoplankton initial concentrations. It is ex-
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pected, since it is the only observed model variable. Also very good performance
is shown for the estimation of the initial concentration of the Zooplankton. How-
ever, the initial condition estimates for the Nutrients are relatively bad, which is
also consistent with the previous experiments.

The initial condition has the impact mainly on the first year of the assimilation
window, whereas the remaining years are governed by the model parameters.
Therefore, the effect of not very accurate initial condition estimations can be
seen only within the first bloom cycle (see Figure 12). Relatively well calibrated
parameters contribute to very good model match for the rest of the assimilation
window. It is also confirmed by the final values of the cost functions for all 15
experiments, as summarized in the Table 5. Although some experiments reached
60 outer loops, for all of them 10-15 outer loops were sufficient for the cost
function to converge.
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Figure 12: Phytoplankton concentration shown within the whole five year assimilation window.
The upper plot presents the surface layer of the water column, and the lower plot presents the
concentration at the 100 meters depth (the 10th layer). Results are shown for the ensemble of 15
experiments. The concentrations resulting from the data assimilation experiments are plotted
in color. The prior concentrations are shown in gray. One arbitrarily chosen observation set is
presented.

6. Conclusions

A model-reduced 4D-Var technique (Vermeulen and Heemink, 2006) was ap-
plied to a one dimensional ecological model (Eknes and Evensen, 2002). The
system describes a water column with concentrations of nutrients, phytoplankton
and zooplankton in time. Three ecosystem parameters were calibrated: grazing
efficiency (f), loss to carnivores (g) and plant metabolic loss (r). The parameter
estimation was combined with the initial condition estimation. The performance
of the method was evaluated by means of twin experiments.
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Four experiments were presented, one with parameter estimation only, where a
perfect initial condition was used for data assimilation. In the second experiment,
the initial condition was perturbed, and it was included in the control vector to
be estimated along with the parameters. For a comparison, the third experiment
was conducted, where the initial condition was also perturbed, however only
the parameters were calibrated. Hence, it was performed within a wrong initial
condition assumption. The goal of the fourth experiment was to estimate the
initial condition in a framework with wrongly assigned parameters.

The first experiment has shown that the model-reduced 4D-Var works very
well for the parameter calibration, where the initial condition is already known.
Despite that the true parameters were strongly biased from their prior values, the
calibration technique handled the problem with high accuracy. Also the measure-
ment error provided extra difficulty since its standard deviation was assumed to
be equivalent to 30% of the measurement value.

In the second experiment the parameter and initial condition estimation were
combined. The same setup was used, except that the initial condition was per-
turbed, hence not perfect anymore. Therefore, the main challenge next to param-
eter estimation was the control of the initial condition, which in general performed
quite well. Beside the initial Nutrient concentrations, very accurate estimations
were shown for the other two initial concentrations. As expected the best result
was shown for the control of the initial Phytoplankton, which is the only concen-
tration for which measurements are available. There is a lot of interaction between
all three state variables. Therefore, there is a potential to improve the control of
their initial concentrations, particularly Nutrients. It could be done by account-
ing for their correlations in the background error covariance matrix Bx0 (30), for
example by generating it from an ensemble of model outputs. Furthermore, de-
spite treating the substances independently in the projection matrix P (31) does
not affect the accuracy in the approximation of the adjoint, it nevertheless could
be beneficial for the initial condition estimation. The initial concentrations are
estimated as the linear combination of the columns of P, therefore extra infor-
mation about how the state variables are correlated is expected to improve the
initial condition update.

The relatively good performance of the initial condition control resulted in
a very good accuracy of the estimated parameters. This could not be achieved
without the initial condition control, which was confirmed by the third experi-
ment, where the same setup was used, except that the initial condition was not
calibrated. Wrongly assigned initial state values resulted in inaccurate parameter
estimations, as well as larger root mean square errors for the concentrations at
the unobserved areas.

The estimation of the initial condition with wrongly assigned parameters has
shown to be unsuccessful. Due to the short memory of the initial condition, such
experiments have more potential to work for shorter assimilation windows. On
the other hand, this experiment illustrated the importance of the parameters,
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particularly for assimilation covering longer time periods.
The reduced model setup ensured its high accuracy, however, it is not nec-

essary to always target at 99% of the information recovered. Experiments for
different amounts of information recovered were performed to investigate this. It
was shown that even 60% of the information can be sufficient to obtain satis-
factory results. Moreover, decreasing the quality of the reduced model resulted
in faster convergence of the cost function (less outer loops were needed). This
shows that already rough model approximations are good enough to minimize
the cost function effectively. Furthermore, due to reduction the model dynamics
are simplified, which helps to avoid local minima.

For less nonlinear cases it may be possible to use the same reduced model
for all outer loops. Then the model outputs would not have to be re-simulated
for every outer loop, which would benefit in significantly less computational time
required. Moreover, in this case the reduced model did not need snapshots cov-
ering the whole 5 year period. Since the original model consists of yearly cycles
it would be sufficient to collect snapshots only from one year, preferably more
frequently during the bloom period. This way also some of the computational
time could be saved.

An advantage of estimating the initial condition in the reduced space is that
it results in a smaller size of the control vector. Instead of calibrating the initial
state in the full space, it is estimated as a linear combination of the columns of
the projection matrix P. Therefore, in this case instead of 60 values representing
the initial condition, only about 11 need to be included as the control variables,
which reduces the number of estimated values from 63 to 14, when taking into
account also the three biological parameters.

To illustrate the robustness of the method an experiment has been performed
for which an ensemble of 15 different prior parameters has been randomly gen-
erated. Each of them was used as the prior set of parameters to initialize 15
different data assimilation experiments. The measurements were regenerated for
each experiment in order to also show robustness of the results with respect to
the randomness in the observation noise. The ensemble of 15 experiments has
shown consistent results, which proves the robustness of the method.

The model reduced 4D-Var technique performed well in the simple 1D ecosys-
tem model, hence there is a potential in the method for real case ecological
applications. However, more advanced tools might be needed to assure good
performance of the technique. Such as a proper transformations to constrain
the parameters within their domains, anamorphosis or log-transformations for
the model states (Campbell, 1995; Simon and Bertino, 2009), as well as more
sophisticated background covariance matrix also might be necessary. Moreover,
tackling the problem for larger systems will need a lot more patterns even to
recover just 60% of information. This will require to plan more carefully how to
simulate and select the model snapshots. Larger applications also will result in
more parameters which need to be estimated. Already in this small 1D ecosystem
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model it was noticed that some parameters could not always be uniquely defined
given only the Phytoplankton observations. As a consequence, there might be
more than one parameter set resulting in a satisfactory value of the cost function.
Estimating more parameters in ecological models is likely to give similar issues,
as it was already experienced in Ward et al. (2010).

Although the system used to investigate the method is small, it is representa-
tive of yearly cycles of phytoplankton bloom. It allows to face important issues
when applying data assimilation methods in ecosystem models, such as the non-
linearity of the model, the strong impact of parameters on the model dynamics,
the positiveness of the variables, as well as the relatively sparse observations with
large error. It’s a good framework for a first assessment of methodological devel-
opments in data assimilation before integration in real complex configurations.
Based on the relatively good results obtained in this 1D configuration, the next
step is to apply the model reduced 4D-Var method and assess its performances
in realistic 3D configurations.
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Appendix A. Construction of projection matrix P

The matrix P is expected to maintain the most important dynamics of the
model. It is needed to project the linearized model equations (20). Therefore, the
reduced space corresponding to P should span a subspace of all the possible model
sensitivities. To this end, an ensemble of possible model changes is generated by
perturbing the parameters of interest; the same ones around which the model is
linearized. Each of the control variables is perturbed separately, and next the
corresponding model outputs are collected at different time locations. The more
snapshots are taken, the more details are captured.

The snapshots are centered and normalized, and next collected in a matrix
denoted as ∆X

∆X = [e1(t1), ..., e1(tns), · · · · , enα(t1), ..., enα(tns)] (A.1)

where t1, t2, ..., tns are selected times at which snapshots are taken, with ns

defining the number of snapshots, nα is the number of estimated parameters,
and ek(tj) is a normalized model change for each parameter perturbation k =
1, 2, .., nα and for each snapshot j = 1, 2, .., ns, i.e.

ek(tj) =
Mj(x

b
j−1, α

b + ∆αk)−Mj(x
b
j−1, α

b)

‖Mj(xb
j−1, α

b + ∆αk)−Mj(xb
j−1, α

b)‖ (A.2)
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With such constructed snapshots, the collection ∆X is an ensemble of incre-
ments δxi. The size of ∆X is nx × ne, where ne is a total number of ensembles,
i.e. ne = nα ns. Next the ensemble is used to create a covariance matrix CX

CX =
1

ne − 1
∆X∆XT (A.3)

The covariance matrix captures the variability of the model sensitivities with
respect to the change of the parameters α. The large values in the diagonal terms
correspond to interesting dynamics (high variance). The large magnitudes in the
off-diagonal terms correspond to high redundancy (high correlations). Thus, ideal
would be to find a projection matrix P such that the covariance of the projected
state ∆Z = P∆X is a diagonal matrix. Hence, a projection matrix P is needed
such that the following covariance matrix is diagonal

CZ =
1

ne − 1
∆Z∆ZT (A.4)

where CZ is the covariance matrix of the state in the reduced space. Notice that
the covariance matrix CZ is related with CX as follows

CZ =
1

ne − 1
P∆X(P∆X)T = P(

1

ne − 1
∆X∆XT )PT = PCXPT

Since the construction of a covariance matrix assures it to be always symmetric,
it can be diagonalized by an orthogonal matrix of its eigenvectors. Hence CX =
EDET , where D is diagonal matrix of eigenvalues of CX, and columns of matrix
E are the eigenvectors. The next step is to choose P = ET , then

CZ = PCXPT = P(EDET )PT = (PPT )D(PPT ) = (PP−1)D(PP−1) = D
(A.5)

Hence by choosing the eigenvectors of CX as the columns of the projection matrix
P, the covariance matrix of the reduced model state CZ is equal to the diagonal
matrix of eigenvalues D. The eigenvectors of CX are the principal components
of ∆X.

In order to get the eigenvectors of CX solving a reduced eigenvalue problem
is much more efficient, since the size of ∆XT∆X is ne × ne, whereas the size of
∆X∆XT is nx × nx, and in most of the cases ne ¿ nx. Thus

∆XT∆Xvi = λivi (A.6)

where λi are the eigenvalues of ∆XT∆X and vi are its eigenvectors. After the
eigenvectors vi are established, the eigenvectors of ∆X∆XT are obtained as
follows

pi =
1

σi

∆Xvi (A.7)
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where σi =
√

λi are the singular values of ∆X. Notice that, since ‖∆Xvi‖ =
σi, then ‖pi‖ = 1. Hence, the vectors pi are not only orthogonal, but also
orthonormal, which is essential for evaluation of the directional derivatives (19).

In order to construct the projection matrix P, the leading principal compo-
nents pi of ∆X have to be selected. To this end the vectors pi are chosen such
that, the variance of ∆X along that direction is maximized. Notice from the
calculations (A.5), that the ith diagonal value of D is the variance of ∆X along
direction pi. Hence the values of the eigenvalues λi represent the magnitude of
spread of ∆X in the direction of eigenvector pi. In other words the eigenval-
ues λi correspond to the variance of the model in the reduced space. Therefore,
choosing the eigenvectors corresponding to the largest eigenvalues, will create
an orthonormal basis, which will map the full model space into space spanning
the most important dynamics of the system. For more details about principal
component analysis see Shlens (2009).

The more eigenvectors are added to the basis, the closer the reduced space
gets to the original one. There is a measure to evaluate the percentage of the
information carried by the reduced space

I =

∑nP

i=1 λi∑
i λi

(A.8)

where nP is the number of selected eigenvectors, and
∑

i λi is the total sum of
all eigenvalues. The number nP is chosen according to how much information I
needs to be recovered. Usually a relatively small number of vectors pi is enough
to represent over 90% of information. The nP selected principal components pi

arranged in a matrix as columns, create the projection matrix P. The principal
components pi are often referred as patterns.
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